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ABSTRACT

The work presented in this report falls into two classes,
namely on the reflectivity of solar infrared from high altitude clouds,
and on the effect of the energy reflected from these clouds on the
statistical performance criteria of a satellite-borne missile detection
system. The scattering of infrared from clouds of spherical water drop-
lets has been treated by Mie theory. For wavelengths in the range
2,5 - 10 micron, and for large angle scattering ( EL 60 - 90°) the
effective reflectivity is due to single rather than to multiple scattering
by water droplets, as a result of the relatively large absorption and
the forward peak in the differential scattering cross section. The
effective diffuse reflectivity under these conditions is of the order of
1 - 2 percent. For actual situations, some discussion has been given of
atmospheric transmission losses as well as of meteorological data on the
distribution of high altitude clouds. Comparison with experiment is made
in a (classified) appendix, and the results are found to be consistent
with the limited experimental data. The statistical problem consists of
the detection of rare high radiance signals in a background having
occasional high radiance levels. The detection criterion thus involves
maximizing peak rather than mean signal-to-noise ratios. An analysis
in terms of likelihood ratios is developed, and it is shown that the
Neyman-Pearson criterion provides a usable partial maximization of sig-
nal detection probability. In practical cases, the Neyman-Pearson
criterion is equivalent to setting up a single threshold. Limited numeri-

cal applications are made for single and correlated detector elements.
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SECTION 1

INTRODUCTION

1.1 THE PROBLEM

A primary factor in IR surveillance from satellites for the
purpose of detecting rocket boosters is the infrared background in which
the booster must be detected. This report deals with the infrared back-
ground in the 2.7 micron band arising from clouds illuuinated by the sun.
It is known that sunlit clouds are the major sources of background radi-

ance.

The problem of the sunlit cloud background can be separated into
two parts. The first part is the determination of the reflected solar
flux from an illuminated cloud taking properly into account the infrared
absorption in the atmosphere itself. The second part is the specification
of the statistical character of the background in terms of cloud frequency
distributions for height, size, and for irregularities. Here it is essential
to consider various kinds of detection and data processing systems because
different statistical properties of the background determine the perform-

ance of the different systems.

In the present report a fairly complete treatment of the first
part of the problem is presented. The second part is also treated with an
attempt to achieve some generality. However, the treatment is far from

complete and should only be regarded as an initial attempt.
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1.2 OUTLINE OF PRESENT WORK

Because of the unsatisfactory state of our knowledge of the
reflectivity of clouds in the infrared -- theoretical estimates differ
by almost two orders of magnitude, a thorough study of infrared reflec-
tion from clouds is made in Sections 2 and 3. The problem of Mie scat-
tering from water droplets having a distribution of radii is treated in
Section 2, where it is shown that in the near infrared the effective
cloud reflection mechanism for large scattering angles (8 > 60°) is
single scattering, while the effective cloud reflectivity for these
large scattering angles 1s of order 1 - 2%, Thus the problem of the
scattering of infrared from clouds of water droplets has been here solved

with sufficient accuracy for most practical purposes.*

The results of Section 2 are applied in Section 3 to the case
of a real atmosphere, where transmission losses and scattering effi-
clencies are combined to provide a series of isoradiance plots assuming
uniform tropospheric cloud cover. Some discussion is given of the possible
effects of large ice crystals (Appendix 3A), while the results for cloud
reflectance are compared with the limited experimental data in Appendix 3B,

and are found to be consistent with these data.

*For definiteness the numerical analysis is limited to the 2.7 micron
band. The same scattering analysis with somewhat different numerical
coefficients applies for a 2.74 { A & 10 micron, but at lower wave-
lengths the problem is essentially different because the absorptivity
of the droplets is reduced to such an extent that multiple scattering
has to be taken into account. At longer wavelengths it is essentially

a matter of grey body radiation.



The treatment of the statistical aspects of the background in
Section 4 begins with a general discussion of criteria for performance
based on statistical decision theory. Conceptual difficulties with
elemental costs and with a priori probabilities which are essential con-
cepts in this formulation are pointed out. It is ultimately made plausible
in Section 4.2 that a simple criterion based on likelihood ratios has
some degree of validity. The likelihood ratio test is applied to various
assumed radiance distributions in Section 4.4 where it is shown that non-
Gaussian bimodal distributions have an entirely different effect depending
on whether the system is evaluated by likelihood ratio or r.m.s. noise
criteria. 1In such bimodal distributions, the large background radiances,
although infrequent, have a large effect on performance which is not re-
flected in the r.m.s. noise criterion. It is also shown by an example
in Section 4.2 how the frequency distribution for radiance is related to
the height distribution of the clouds through the calculation of cloud
reflectivity given in Sections 2 and 3. In Sections 4.3 and 4.4, an
attempt is made to apply the likelihood ratio test to a comparison of
single sensors with multiple sensors with correlation, leading to a
rather obvious resul. that correlation does enhance system performance
if the spatial extent of a cloud is larger than the spatial extent of
the target. Finally, in Section 4.6 some remarks are made about optimum

linear filters.

In Appendix 4A an attempt is made to study two-dimensional
autocorrelation functions and Wiener spectra on the surface of a sphere.
It was found that the Wiener-Khinchine theorem does not hold under these

conditions.
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SECTION 2

SCATTERING OF INFRARED FROM ASSEMBLIES OF WATER DROPLETS

2.1 PHYSICAL PROPERTIES OF HIGH ALTITUDE CLOUDS

A high altitude cloud is an assembly of water droplets or ice
crystals, or a mixture of the two at an altitude of approximately 20,000
feet or more. Such a cloud may move relatively slowly under the in-
fluence of horizontal winds, as in the case of cirrus clouds or oro-
graphic disturbances, or comparatively rapidly (10-103 cm/sec) as a

. , 2.1
result of internal convection as in the case of cumulus clouds.

As yet there is rather little detailed experimental data on
high altitude cloud properties, Measurements of low altitude clouds
indicate water droplets with a mean radius of the order of 5 micron with
perhaps 0.1-1 gm HZO/mB. At higher altitudes one may perhaps expect a
somewhat lower water content. The droplet size distribution may be

represented a52.2

n(r) dr = No e 8t dr (2.1)
where n(r) is the number of particles per cc with radius r - (r + dr).
The mode radius of this distribution is r, = n/a. Deirmendjian2'2 uses

n=6, a=1.5 micron—l, so that r = 4 micron, Here this distribution
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is examined in detail. Cases with smaller and larger droplet size,

r = 2, 8 micron, and with the same-Tean width of the frequency distri-
bution as for n = 6, a = 1.5 micron ~, are also investigated, as are
models with r, = 4 micron but with narrower and wider standard deviations.
All the particle size distributions are shown in Figure 2.1 and Table 2,1.
In general we shall deal with thick clouds--this to be defined precisely
later--and thus the actual number of particles per cc or the liquid

water content of the cloud do not affect the scattering directly.

A cloud rises due to the buoyant forces present when the
temperature within it is higher than the ambient temperature. As the
cloud rises, its temperature drops as a result of both its adiabatic ex-
pansion and of turbulent mixing with the surrounding atmosphere. Thus,
under certain conditions, there will be ice crystals in clouds. For
instance, cirrus clouds are largely or entirely ice, while cumulus

*
clouds may alsoc contain some ice crystals.

There are wide variations in the shape and size of ice crystals,
ranging from frozen water droplets, which may be almost spherical and
of the same mass as the water drops, all the way to prisms and hexagonal

.

cylinders up to 500 micron in their longest dimension, The shape,
size, number density and motion of these ice crystals are complicated and
incompletely understood functions of the ambient conditions, and it is
difficult to make any definitive statement about them, particularly with
respect to the frequency with which high altitude clouds of ice crystals
may occur. In this study, clouds will be treated as assemblies of water

droplets. 1In other words, effects arising from the specular reflection

It should be pointed out that water droplets of 1-10 micron radius

freeze at -35 to -40°C because of surface tension effects. See Ref. 3.3.
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TABLE 2.1

SCATTERING OF INFRARED FROM VARIOUS DISTRIBUTIONS OF PARTICLES

Particle Mode Radius 2 4 4 4 8

r, = n/a (micron)

Width of Distribution  Regular Narrow Regular Wide Regular
n 2 24 6 2 24
a (micron-l) 1 6 1.5 0.5 3
Mean Mass per Particle 2.5x10-lo 3.l+0x10.10 6.25x10-10 2.01x10-9 2.72x10"9
(gm)
Density of Water (gm/m3) .0251 .0340 . 0625 .2011 .2723
for 100 particles/cc
-6 2
b (10 ~ cm) .234 .358 .562 1,247 2,009
o (1075 cn?) 735 1.349 1,466 2.151  3.064
scatt L] . . . .
Cns’ Ocart 0.318 0.265 0.383 0.580 0.656
x, = 2 rc/ A 4,65 9.3 9.3 9.3 18.6
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of light from ice crystals such as haloes, sun dogs, et:c.,z’4 will not

be taken into account. Some of these effects are discussed in Appendix 3A,

The refractive index of water in the infrared has been tabu-
lated by Cent:eno.z'5 The results in the 2.7 micron band are shown in
Figure 2.2, There is no information on the temperature variation of the
refractive index of water, or on the refractive index of ice in this
frequency range, The most noticeable feature is the fact that water
absorbs significantly only for A », 2.7 micron. The physical reason for
this is that this is the wavelength corresponding to the highest molec-

ular vibration frequency of the H 0 molecule, or to the maximum frequency

2
of the spectrum of "lattice vibrations" of water.

2.2 SCATTERING OF INFRARED BY A SINGLE DROP
The scattering of electromagnetic radiation of wavelength X

from a sphere of radius r is characterized by the parameter
x = perimeter/wavelength = 2 7rr/ X . (2.2)

If x) 1, we are in the 'geometrical optics" region, while Rayleigh
scattering holds for x & 1. However, for x), 1, which is the case in the
visible and near infrared for the particle sizes under consideration, the

difficult "Mie Scattering" analysis applies.2'6’2‘7

To solve the problem
in this regime it is necessary to solve Maxwell's equations for a plane
incident wave and spherical outgoing scattered wave subject to the
appropriate boundary conditions on the scattefing sphere. The resulting
expressions giving the angular distribution and total scattering cross
gection are given in Ref. 2.6, p. 630 f£, and Ref., 2.7, p. 114 ff. In

the notation of the latter reference, the results are
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scatt

= 27 25D 2 = G 1){ ‘ a|®+ | o] 2} (2.4a)
N =

) 2, 2 ©
a—;xt = (27 /x%) Zn -, (2n + 1? Re(an+ bn) (2.4b)

where i“ (@) and 14.(9) are the intensities of radiation scattered through
angle @ with polarization parallel and perpendicular to the plane of
observation, which is the plane defined by the incident and scattered rays.
P (cos@) are associated Legendre polynomials, J (z), N (z) and H(z) (2)
are respectively Bessel functions of first and second kind and Hankel

functions of the second kind

a2y =3 , (D - 1N, (2 (2.5)

m is the complex refractive index of the scatterer defined here with a

negative imaginary part. o:;att is the total scattering cross section
and
= g o }
cy;xt scatt + abs (2.6)

is the extinction scattering cross section; a:bs is the absorption cross

section.

These expressions have to he evaluafed numerically, using a
high speed computer. For the present purpose the computations were
carried out on the Aeronutronic IBM 709 computer using a program locally
called CLOUD. This program computes the differential scattered intensity
per particle averaged over the particle size distribution (2.1) in units



of (27 R/ )~)2, where R = distance from scatterer to observer., It
applies for x > 0.1. The intensity shown in Figure 2,3 has been aver-
aged over the scattered intensities for polarizations parallel and perpen-

dicular to the plane of scattering
1, @=1/2(1, @+i, @] (2.7)

The program automatically computes the angular distributions iav’ i,
i  and the total and scattering cross sections. The results of Figure 2.3
and Table 2.1 give the results over the 2.7 micron band; in other words,

for the scattering cross section of Table 2.1, for example

= " v

Oceare = W[ 07 2e675) + 07 @725) + OF . (2.779)
(2.8)

where the complex refractive indices shown in Figure 2.2 show a number

of interesting characteristics.

(1) The effect of averaging over a particular size distribution
is to smooth out the rapid variations in the angular scattering distri-

bution. For illustrations see Reference 2.2.

(2) The angular distribution is always heavily peaked in the
*
forward direction and the ratio of forward to backward scattering is
very insensitive to the details of the distribution, This may be under

stood because the refractive index (n' - in") is not very different from

2 -
For Deirmendjian's distributionz’“--that is, n =6, a = 1.5 micron 1
in Equation (2.1)--90% of single scattered radiation goes into angles
of less than 360, while the scattering through angles of greater than

90° is essentially isotropic.
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one, so that the reflectivity R for an infinite plane slab

I CURE VL Vi
(' + 1% + nr?

(2.9

is quite small, actually of the order 1 percent (see Figure 2,2). In
fact, the relative amount of energy scattered through angles greater than
T/ - J(x/2)/3(0) where

b7 r
J(e) = J/; b J o sine do i (6) (2.10)

is also of the order of 1 percent.

(3) The different particle size distributions do show some
difference in their behavior at intermediate angles (10°£§ °] 5;1200),
but even these differences are not very large. This is certainly a

consequence of the smoothing effect of the particle size distribution.

(4) The total or extinction cross section CT;xt of Equat;on (2.6)
increases with increasing L but not strictly proportionally to L
This effect again is due partly to the effect of the size distribution,
and partly to the oscillatory behavior of o:xt(x) (cf. Ref, 2.6, p. 659,
Figure 13.14).

(5) It is noteworthy that Gst/ cr;catt increases with in-

creasing rc , even though, of course, no change in refractive index
occurs. This may be understood qualitatively as follows. In the geo-

metrical optics region defined by x = 2 7cr/))> 1, for a sphere of
radius r is proportional to the surface area; that is, cr;catt ol rz.

On the other hand, the absorption cross section is proportional both to

2-11



the scattering cross section and to the path length within the absorber,
which again is proportional to the radius, so that O;bs e r3. It is
clear from this why one might expect CT;bs/ agcatt to increase with

increasing r, Or X .

(6) The small maximum in iav(Q) at @ = 170° is a residual

2.2, 2.4 that is essentially a refraction phenomenon arising from

rainbow
internal reflection combined with scattering. Increasing the absorption

will reduce the importance of this phenomenon,

(7) The insensitivity of the results to the particle size
distribution leads one to suspect a similar insensitivity to wavelength
in the 2 micron - 15 micron region, since the refractive index changes

comparatively little,

To sum up the results of the Mie scattering calculation, most
of the scattering from a single drop is in the forward direction, and
the scattering is essentially isotropic for scattering angles @ ZJ90°.
The result that the effective large angle reflectivity is of the order
of 1 percent seems to be quite unambiguous; any statement to the contrary
/ o ~~ 0.3, which represents a very

abs scatt
significant degree of absorption for the multiple scattering problem.

is dubious., Finally

2.3 SCATTERING BY AN ASSEMBLY OF DROPS

a. Introduction
It is required to calculate the spectral radiance of a cloud of
water droplets under conditions of given (solar) illumination. That is,
a flux of radiation Fo watt:/cm2 in the relevant frequency band*is inci-

dent on the cloud, and we ask for the spectral radiance H of the cloud,

In the frequency band 2,65 - 2.80 micron, F° = 5,7 x 10-4 watt/cmz.
(See Ref. 2.8).
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which is the power sent into unit solid angle from unit surface area,
Thus H is measured in watt/cm2 sterad, Explicitly, if the illuminated
surface area of the cloud is Sill’ the radiance may be expressed in
terms of the differential scattering cross section per unit area, Qc(i,O)

of the cloud as
H(B, #) 8,4, = F_ 5.y, Q.(i, ) (2.11)

The aim here is to evaluate Qc(i,Q).

In this section it is first shown that multiple scattering is
unimportant except for very small angle scattering. Then a general
treatment of the reflection from a planar cloud is given. In appendices
we give a model to make quantitative estimates of the effect of multiple
scattering, and also a discussion of the scattering from spherical clouds,
The discussion of spherical clouds has been relegated to an appendix
first, because it is not as important as the case of planar clouds, and
secondly, because it has not proved possible to giveva numerical solution

of the same degree of generality as for planar clouds.

It should be noted that the results of the present section
have rather wide applicability since the scattering cross section iav(G)
is essentially independent of the drop size distribution over a fairly
wide range, and since, in addition, the result for a large cloud is in-

dependent of the number density of droplets.

b. Single vs. Multiple Scattering

The possible effect of multiple scattering presents considerable
difficulties in the case of a large cloud. The general problem of radia-
tive transfer with partial absorption and an anisotropic angular distri-

2.9,2.10

bution has not been solved. However, in the present situation

of predominantly forward scattering with non-zero absorption, the effect

of scattering of orders higher than single scattering has been shown to

be small except for very small scattering angles. (See Ref. 2.9b).
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This result can be understood qualitatively as follows: Most
of the scattering is in the forward direction, For Deirmendjian's
distribution,z'2 90 percent of the single scattered energy goes into
6 < 360, while the scattering is essentially isotropic for @ > 90°.
Also, (r;bs/ cace ™ 0.3 (cf. Table 2.1), so that in three collisions
the total intensity is down to 1/e times the original intensity due to
absorption. By this time, however 90 percent of the remaining energy
would be scattered into angles less thanN3' -+ 36° = 65°, Thus,
multiple scattering will be unimportant for scattering through angles

greater than 60 to 90°.

This same result has been obtained by Goldstein by an
explicit numerical evaluation. Goldstein compares first and second
order scattering with absorption by using some representative Mie
scattering results of Dermendjian.2’2 In this way he finds that single
scattering far outweighs double scattering except for scattering through

*
very small angles.

The predominance of single over multiple scattering makes the
calculation of the reflection of near infrared radiation from clouds

possible., This result has a number of interesting consequences:

(1) The absorptivity of water droplets is very high throughout
the region X = 2.5 - 10 micron and above. Thus, the present analysis
applies throughout this frequency range with appropriate quantitative
modifications.

*
It should be pointed out that while the expansion in different orders

of scattering can be written down formally, yet for anisotropic angu-
lar distributions at least the real importance of the different
orders of scattering is very hard to estimate except by explicit

numerical evaluation.
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(2) In the visible region the absorptivity of water is very
low. Thus, in this region, a large cloud may be represented at least
roughly as a diffuse Lambert's Law reflector, because of the large
amount of multiple scattering. However, the justification of this pro-
cedure is by no means trivial, and in particular we do not know how to

treat the region 1 micrond A < 2.5 micron,

(3) 1In the far IR (25 10 micron) a cloud acts as a grey body

emitter.

(4) It follows that, except possibly in the visible, the
description of a cloud as a Lambertial diffuse reflector is a very poor
one on physical grounds. Of course, it may turn out under certain con-
ditions that the concept of "diffuse reflectivity" may be useful for an
empirical description of cloud reflection if the effective diffuse re-
flectivity coefficient does not vary very much with scattering angle in

the appropriate region.

(5) For low altitude clouds there will be a significant degree
of attenuation due to the absorption of water vapor in the cloud in the
2.7 micron band. This mechanism is not effective above 30 Kft, where
the effective extinction of the beam within the cloud is due entirely to
absorption by the droplets rather than by scattering. Thus if there are
N scatterers per unit volume, the effective extinction distance within

the cloud, -1, is given by the relation

$ -~ o : (2.12)

abs
(6) The extinction distance ﬂ-l enables a precise distinction
to be made between small and large clouds. If the characteristic distance
scale of a cloud is denoted by L, then for L ) ﬁ-l, one is dealing
with a small cloud composed of NL3 droplets all scattering independent-

ly. Thus, the total scattering cross section of a small cloud is given as
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(small) 3
Q scatt NL 0l'scat:t: (2.13)

On the other hand, for a large cloud defined in terms of L ¥ ﬁl-l, the
effective cloud volume seen is not L2 but Lzlﬁs , since the incident
beam only penetrates @ -1 into the cloud. Thus, for a large cloud

2 2 o~

(large) L o - scatt
Uscatt)™ N B scate L ... (2.14)

In other words, for a large cloud the total scattering cross section is
independent of the number of scatterers per cc or of the scattering

cross section per scatterer O~ Of course, the angular distribution

scatt’

Roknl,

abs

does depend on

c¢. A Planar Cloud

Consider the single scattering from a large slab of material
containing N scatterers per unit volume and having a flat top surface
with an illuminated area sill’ which is the (xy)-plane z = 0 of our
system of coordinates (see Figure 2.4). The angles of incidence and
exit are respectively i and e measured from the local normal, and z in-

creases going into the scattering medium,

A volume of element dVA has a total scattering cross section
N dVA c>;catt’ and the total amount of single scattered radiation sent
into unit solid angle in the direction (8, ¢) is

~{9(r., +t r, ) m
1P o) Sgp; = FN deA e B rpy * nyg Pohr]e  (2.15a)
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FIGURE 2.4. GEOMETRY FOR SCATTERING FROM A LARGE PLANAR CLOUD
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[0 /on], - o7 1 (030 (2.15b)

where J(0) = 745 for Deirmendjian's distribution of droplet sizes (n = 6,
a=1.5 micron-l) in Equation (2.1). This quantity is defined in
Equation (2.10), All the quantities entering here have been defined
either in the text of in Figure 2.4. The factor e- FIA ¥ TAE) gives
the effective extinction of the ray which is scattered through an angle @
at the point A. The effective extinction is, of course, due to absorption

(see Equation (2.12) and the discussion immediately preceding it).

The integration over dVA is carried out extending j]. dx dy
over Sill and letting z go from O toed . This gives the result

- @af(i.e) z _ FoN [bc'/alt] 9

ob
H(l) ) = FN [Bcr%)n]g J; dz e

f(i,e)
(2.16a)
f(i,e) = 1/cos i + 1l/cos e (2.16b)
Finally, using Equation (2.12) fore. , one gets the result
F(doAn] o 1 (8)
(1) =_°£'___ = —av_ -
O = tme " %o (Tacar/ Twnd 70) 8,00 017

This result may be understood physically. For a large cloud
the absolute magnitude of the single scattered energy is proportional to
the incident flux Fo and to the illuminated surface area Sill’ but does

not depend on the absolute magnitude of the scattering cross section per
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scatterer c’;catt or on the number of scatterers per cc, N, The angular
distribution depends on the differential scattering cross section from

‘each scatterer, modified by the extinction within the cloud, which gives
rise to an "albedo" factor ( cr;catt

/ G‘;bs) and to a geometrical factor
[f(i,e) ] -1. See item (6) of Section 2.2,

The differential scattering cross section per unit illuminated
surface area, Qc(i, 0) of Equation (2.11), is plotted in Figure 2.5 for
various valuesof i in the important case of coplanar scattering when the
incident ray, the local normal, and the exit ray all lie in the same

plane, so that
itet+to =T (2.18a)
f(i, e) = 1/cos i -1/cos(® + 1) (2.18b)
It is possible to write down the result (2.17, 2.11) in terms

of Lambert's Law diffuse scattering with an effective diffuse reflection

coefficient 71 =‘q (i, 8). The appropriate expressions are

Q_(i, 0) = [rl (1, 8) /) cos 1 cos e (2.19a)
‘ (3 /an7
12 (1, 8) = cos i cos e cr;bs f(i, e) (2.19b)
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FIGURE 2.5 SCATTERING FROM A LARGE PLANAR CLOUD

NOTE:

For the calculations presented here, it has been assumed
that the incident ray, the reflected ray, and the local
normal - AI, AE, AK of Figure 2.4 - all lie in the same

plane.
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*
Some typical numerical values of 71(1, @) are given here:

[N
#
o
[}
o
©
"

180°; 11 = ,0099

.017

-
"
(1]
L}
W
o
L}

17o°;7(
1=¢e=45 06=290°; i = ,024
i=e=60°0=60"; 7N =.060

i=0,e=90=090° ;1 = ,033

(2.20a)

(2.20b)

(2.20¢)

(2.204d)

(2.20e)

In view of the single scattering mechanism, the concept of a

"diffuse reflectivity” is rather unphysical. Also, the angular variation

of the numerical values of Tl(i, ) indicates that it is not a very use~

ful concept for quantitative discussion.

*

These values, like the results of Figure 2.5, refer to the coplanar

case, 8o that they give maximum values for the scattering cross

section or reflectivity.
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APPENDIX 2A

A MODEL TO ESTIMATE THE EFFECT OF MULTIPLE SCATTERING

A phenomenological way to estimate the importance of multiple
scattering is to regard the cloud as made up of a single scattering layer
one extinction depth thick and a diffuse core with effective diffuse re-
flectivity ‘n *, The coefficient'q * is obtained by matching the radiance
given by this model, H*(0), with that for the single scattering model for

a given value 6% of 0.

Instead of Equation (2.16a) we have

-}
FON[M/QR]Q S(z dz e Bidie) 2 + Fo(‘)l */A”) cos i cos e

H*(Q) =
(2A.1a)
= H (0) [1 - e'f(i’e)] + F(q*/7 ) cos icose
where
W S 215

i+e+ox=T7

Clearly the choice of * is not unique. 0% =W for backward scattering
sives 1= e =0, £(i,e) = 2, N* = .0099 e"? = .00134. The function
QC*(i,G) is shown in Figure 2.5 for i = 0, for comparison with Qc'
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It should be noted that the fact that Qc* is similar to Qc
does not by itself prove that multiple scattering is unimportant, but
merely demonstrates the self-consistency of the present way of intro-
ducing multiple scattering in terms of a diffuse core underlying a

single scattering layer.
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APPENDIX 2B

SCATTERING FROM A SPHERICAL CLOUD

It has not been possible to carry through the analysis of
Section 2, Paragraph 2.3c¢ for scattering from a planar cloud to the
case of a spherical cloud. The reason for this is that we have not
succeeded in evaluating the volume integral of Equation (2.15a) for
spherical geometry. In the present appendix are given the formulation

of the problem and an approximate estimate of the cross section.

Consider the scattering of electromagnetic radiation through
an angle © by a sphere of radius a. In particular, a typical ray is
shown in Figure 2B.1. The ray is incident on the sphere whose center
is at the origin O at a point I whose spherical polar coordinates are
(a, T', 8'), is scattered at a point A(a-z, ¥, 8), and leaves the
sphere at a point E(a, 3", &§"). The angles IOA, AOE are denoted by

g's ¢" and th: angles d?A, ofa are denoted by i, e in analogy with

the planar case.

It should be noted that i and e are constant for the planar case of
scattering through a constant angle 8, so that one gets different
scaétering curves for different values of i, as are shown in Figure 2.5,
This is not the case for spherical geometry, where i,e vary for all

the different rays corresponding to scattering through an angle 9, so
that there is a unique angular scattering curve. However, this

feature complicates the evaluation of the integrals.
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FIGURE 2B.1. GEOMETRY FOR SCATTERING BY A SPHERICAL CLOUD.

IAE DENOTES THE PATH OF A TYPICAL RAY SCATTERED THROUGH AN ANGLE
6 : NOTE THAT IN GENERAL THE FOUR POINTS I,A,0,E, DO NOT ALL LIE IN A PLANE.
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The triangle rule for (IOA) gives the exact result

Voo sin i _ B.1
€ arcsin [——-1 —y ] i (2B.1)
For large clouds defined in analogy in the discussion of Equation (2.14)
by

1

aPyp s ieadz , (2B.2)

we may work to the lowest order in a/z. Then Equation (2B.1l) gives

€' =(z/a) tan i + O(Z/a)2 (2B.3a)

z/cos i + 0(z2/a) (28.3b)

T1a

and to this order the volume element is

4, = dz ds [1 + 0(z/a)) . (2B.4)

Here dS is an appropriately defined surface element:
ds = az g( ¥ §) dcosgd [y (2B.5a)
=a2 g'('s", 8')dcos‘u" a8, (2B.5b)
where g, g' may be functions of the appropriate angles but are independent

of z to the lowest order in (z/a). Thus, to this order the radiance of

the cloud due to scattering through an angle @ is
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-p,, +r,)
[whr] o = F, N [722] J. w, e Plroa® v (28.6a)
- z £(i,e)
- r N[7A4R] f av, e 8 [1+o0c/a)]  (28.60)
F N
_ _o Lwén]o f-f—(-%s-;)- (2B.6c)
p ’
where
f(i,e) = 1/cos i + 1/cos e (2.16b)

Thus far it has not proved possible to evaluate the integral
.f ds/f(i,e) exactly. In general one may put

ff(f?a - Sm(e) Cueay (28.7a)
N ¥
Sill(g) = a J cosq; d q/% , ded = 26 (2B.7b)

where the coordinates ( \P ,& ) are defined in Section 3.3, and in

particular in Figure 3.} .

An upper bound to <1/f(i,e)>av may be set as follows. First
of all, consider coplanar scattering; i.e., I, A, O, and E all in the

same plane, and

i+e+0=7- g -€"=%[1-0(z/a)] am  (28.8)
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In this case for constant scattering angle 0,
f(i,e) = 1/cos 1 = 1/cos(® + i) (28.9)
and as i varies,
£(0) = 2/s5in(1/28) € £(i,e) g (L =7 /2) . (2B.10)

Thus we have an upper bound on <1/f(i’e)>av
UE(i,e)) € 1/£(0) . (2B.11)

Thus an upper bound for the scattering cross section per unit

illuminated area, Q (), is given by the expression

spher

NP L) PP Al ko TR I
spher Fo 8111(9) £(0) spher

(2B.12)

(Max)

The function Qapher

(0) is shown in Figure 2.5.

In general the representation of a planar cloud is signifi-
cantly more useful than that of a spherical cloud. However, under
certain conditions of oblique viewing the effect of the edges of clouds
may be important, and here the model of a spherical cloud may prove of
interest. In any case, the analysis can certainly be extended, although

numerical techniques may be necessary to evaluate <l/f(1,e) >av'
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SECTION 3

SCATTERING OF SOLAR INFRARED FROM CLOUDS

3.1 METEOROLOGICAL DATA

Natural clouds are made up of assemblies of water droplets
or ice crystals. In either case, the water content is in the range
0.1 - 1 gn/m> at the higher altitudes, and up to 10 gm/m> at sea level.
For water clouds, observed droplets range in size from 2 - 30 micron
radius, with mode radii 4 - 8 microns. In the case of ice crystals, the
particles méy be of roughly the same size, or there may be significantly
fewer particles up to 500 microns in their largest dimension. The
shape of the ice crystals may be hexagonal, prismatic, or complex, and
the crystals may possibly be aligned by convection currents within a
cumulus cloud, or (less piobably) by wind shear in the case of cirrus or

stratus clouds.

Cumulus clouds in general cool by adiabatic expansion accompany-
ing their rise, rather than by thermal exchange with the ambient atmosphere.
These clouds undergo constant convective stirring, which leads to the
characteristic anvil or mushroom shape of thunderheads. It should be
mentioned that 1 - 10 micron droplets freeze at -35°C to -40°C on account
of surface tension effects, so that the question of under what conditions
clouds are made up of ice crystals rather than water droplets does not

necessarily have a simple answer. .
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Below the tropopause (30-40 Kft) there is a great deal of
local atmospheric structure and, hence, various types of clouds. 1In
general, there is a relatively high probability (10% for the continental
U.S.A.) of more or less uniform cloud cover at the tropopause. At the
present there is not much quantitative data on higher clouds except for
Tiros satellite pictures, which have not yet been processed completely.
Tropical thunderstorms associated with hurricanes or typhoons form
cumulus systems up to several hundred miles across which have been known
to "burst through' the tropopause and rise to a significant height. At
higher latitudes there is not much statistical information, but one might
infer that for a cloud to rise a height h above the tropopause the linear

dimension of the cloud has to be at least of the order h.

There are known several rare and not very dense types of very
high altitude clouds. These are "noctilucent® clouds at up to 30 Km
(90-100 Kft) altitude, which are very thin and composed of ice crystals,
and "nacreous' or '"mother-of-pearl' clouds at 20-30 Km which are inferred
to be composed of spherical particles of rather uniform size on account

of their color.

In summary, it must be stressed that the present discussion
clearly does not do justice to the large amount of meteorclogical work
of observing and classifying cloud data. Up to the present, most experi-
mental work deals with rather low altitude clouds (less than 10 Km or
30 Kft) as far as observation and sampling go. New information from
satellites, balloons and high altitude jet airplanes is beginning to
supplement these data. Unquestionably, in 3 to 5 years there will be
available much more information on high altitude clouds than exists at

present.
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3.2 TRANSMISSION LOSSES

a. Introduction
The attenuation of solar infrared in the 2.7 micron atmospheric
absorption band, which is here interpreted as 3675 + 100 cm'l, is to be
examined for heights above 10 Km. The absorption in this band is due both
to CO, and to HZO' The CO2 in the upper atmosphere is well known to be
9 at S.T.P.

in a vertical one-way path to infinity is 240 atm-cm (cf. Ref. 3.1,

mixed uniformly with air (.03% by volume). The amount of CO

ch. VIII), and at a pressure of (p/p,) atmospheres, the residual amount

is 240 (p/po) atm-cm.

The amount of water vapor and its distribution are not so
firmly established. Here the latest compilation of Gutnick3‘5 is used.
The results are shown in Table 3.1. It should be noted that Gutnick's
estimates only extend up to 34 Km, and it is quite possible that there
is a significant amount of water at higher altitudes. For instance, if
the density of water vapor from 34-50 Km is 0.2 gm/m3, the amounts of
precipitable water at all altitudes in Table 3.1 have to be increased by
.0032 gm/cmz. This is simply a measure of the experimental uncertainty

of this quantity.*

*It should be pointed out that it is not completely clear whether the
water vapor concentration is a single function of height3'5, or whether
in fact there are large variations, by factors up to 100 - 1000 between
a 'wet" and a ‘dry" atmosphere3'6. The present concensus favors the

uniform distribution.
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TABLE 3.1 *

ATMOSPHERIC WATER VAPOR CONCENTRATION AT HIGH ALTITUDES

Altitude h Atmospheric Density Mixing Ratio Water Density Pprecipitable
(Km) f(Kg/m3) m (gm/Kg air) fm (gm/m3) ( F/\Tatgr
gm/cm<) from
34 Km Down
10 4.135 x 107 .038 '1.571 x 1072 .00678
12 3.119 x 107 .017 .530 x 1072 .00468
14 2.279 x 107} 010 .228 x 10”2 .00392
16 1.665 x 1071 .0095 158 x 10~ .00353
18 1.217 x 1071 .012 146 x 1072 .00323
20 8.851 x 1072 .018 .160 x 1072 .00292
22 6.500 x 10”2 .027 176 x 1072 .00259
24 4.752 x 1072 .039 185 x 1072 .00223
26 3.436 x 1072 .060 .206 x 10”2 .00184
28 2.436 x 1072 .088 217 x 1072 .00141
30 1.786 x 1072 .125 .223 x 1072 .00097
32 1.304 x 102 .180 .235 x 1072 .00051
34 9.602 x 107> 290 .279 x 1072 0

h
. [ L
(1) Precipitable water from height ho to h1 = ho (f m)h dh.
(2) 1f (g m) = 2 x 10-3 gm/m3 from 34 - 50 Km altitude, the additional

amount of precipitable water is .0032 gm/cm2 below 34 Km.
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The transmissivity for a vertical one-way path from infinity
down to the reference altitude h is given in Table 3.2. The transmissi-
vity factors used there have been obtained from the calculations of

Plass, Stull, and Wyatt3'7.

It should be mentioned that the transmissivity
calculations apply to constant pressure; we have used values corresponding
to % p(h), where p(h) is the atmospheric pressure corresponding to the
reference altitude. This is clearly not completely satisfactory from

a quantitative standpoint, but provides an estimate, which is all that is

called for in the present application.

b. Slant Path Transmission

The fact that the densities of C0; and Hy0 are functions only
of altitude (rather than of geographic location) implies that for a
slant path from a point A to infinity, inclined at an angle ¥* to the

vertical, the effective absorbing path length is given by the relation
Slant Path Length (Angle <% ) = (Vertical Path Length ) / cosy- (3.1)

This condition holds for an appropriate range of ¥ : 1in particular, if

R, = radius of the earth, ho = maximum height at which there is significant

attenuation (ho ~ 100 - 150 Kft), then (3.1) holds, provided

(r

i-r) » b /R, (3.2)

or, since ho/Ro A 20 minutes of arc, Eq. (3.1) holds for 0 € ¥ < 89°.

If the vertical one-way transmissivity from point A to infinity

is t, then, provided Eq. (3.1) holds,

-n
Slant Path Transmission Loss = t(cos v ) > 0 <n gl (3.3)
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3.8

where
n =1 for the "weak line approximation"
n = % for the "strong line approximation with no overlap" (3.4)
n ¢ % for the "strong line approximation with overlap"
. . 3.8 .
The overall problem is a very complicated one . In the calculations

of isoradiance plots in Section 3.3, we use n = 1; i.e., the "weak line

approximation."

3.3 REFLECTION OF SOLAR INFRARED FROM A UNIFORM CLOUD COVER

a. Introduction
In Section 3.3 we discuss a uniform tropospheric cloud background.
In practice there would be large black areas due to the absence of
clouds at the tropopause and occasional bright spots arising from high

altititude clouds.

For definiteness we consider a satellite D at a height
(r-a) = ( ? - 1)a above the surface of the earth, whose radius is a.
For a numerical example, we take the satellite height to be 2000 miles,
so that g = 1.5. Let the sun S be at an angle of elevation . re;ative
to the satellite. The question is now the following. The satellite
scans the portion of the surface of the earth that it can observe with a
very narrow beam. Under these conditions, how much radiation in the
2.7 micron band does the satellite receive as a function of its direction
of view, of the elevation angle, of the normal one-way transmissivity
factor t of Section 3.2, and of the scattering law iav(G) of Section 2
and Table 3.37



R B B - )

TABLE 3.3

*
THE SCATTERING FUNCTION 1av(e)

Scattering Angle 0 (degrees) 1av(e)

0 10,448

5 5,970.2
10 1,599.4
15 559.9
20 297.8
30 107.6
40 44,07
50 20.10
60 10.21
70 5.929
80 4,091
90 2.659
100 2.171
120 2.078
140 1.984
160 1.891
180 1.798

*This function differs from the exact result of Section 2 in that the

Yrainbow" maximum at @ = 170° has been smoothed out.
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The numerical calculations have been carried out for t = 0.1 and
0.5 and for of = 00, 450, 900, 1200, and the calculation has been programmed
so that a different scattering law iav(e) may be inserted readily in the
form of a table if it is desired to repeat the calculation for different

values of the parameters.

b. Geometrical Considerations

The geocentric coordinate system used here is a slight modification

of that of Zirker, Whipple and DavisB'lo. All the coordinates that arise

are shown in Figure 3.2, where l-)gdefines the z-axis and DOS the (zy)-plane,

so that
D = (0,0,a ? ) (3.5a)
S = lim ¢ (0,sin ot , cosx ) (3.5b)
$> 0
The geocentric angles are a latitude \f/ and a longitude ¢ . The

latitude \-l/ = 0 defines the equatorial (yz)-plane, and the latitude
V7 =1C/ 2 defines the positive x-axis. The longitude @ = 0 defines the

positive z-axis, and point A on the surface of the earth has the coordinates

A = a(sin q/, cos \‘I sin 63 , cos \'V cos 9 ) (3.6)
and the surface element on the sphere is

ds = a’cos Ay do . . 3.7

The vector E has magnitude B, and is given as

s - a(-sin 4/ , -cos\{/ sing@y , ? -cos \P cos ) (3.8a)

lB'Z /32-D2-1+ ?2 -2 ? cos\{/cos(.,) (3.8b)
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FIG. 3.2. LIMITING VALUES OF W,

The vi%wed illuminated portion of the earth is characterized by
ot €

arc cos(l/f ) because of the condition 0AD » (A.D = 7/'/2, see
Eq. (3.12).
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In terms of these geocentric angles ( \.P,co ), the local angles

of incidence, exit, and scattering at the point A are given by the following

relations:
cos i - ('%’A, E‘A’s) = cos Y cos (oL - W) (3.9a)
cos e = (E:A’ EA:)D) = (l/ﬁ)(? cosq' cos G -1) (3.9b)
cosfb = (EZs’ EZ)D) = .(l/ﬁ) (? cos X - cos Y cos(Q -w)] (3.9¢)
where EO-)A is the unit vector parallel toa, and so on. The angle (5= T -9,

where @ is the scattering angle of Section 2.

In principle, this specifies the problem. However, it is more
convenient to express the results in terms of the angles of view of the
satellite, here chosen as ( g ,‘vl ) and sketched in Fig. 3.1. By referring

to Fig. 3.1, one sees that

cos CaA = (FO)A’ E:))C) = cos \{/cos w (3.10a)

CA = a sin COA = a(l-cossz coszo.) )% (3.10b)

AB = a sin \_}; , (3.10¢)
and thus

sin‘g = AB/AC = sin\f/ (l-cosz\}' coszw )% (3.11a)

sin ~l = AC/AD = (l-coszhlf coszw )‘f/n. (3.11b)
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FIG. 3.1. GEOMETRY FOR SCATTERING OF SOLAR RADIATION FROM A POINT A ON THE SURFACE
OF THE EARTH TO THE DETECTOR D.

X is the elevation angle, (\ ,u') are the latitude and longitude of A, i, e, @ =
77 - / are the angles of incidence, exit and scattering for the ray SAD under
consideration here. (', )are the angles of view of A from the satellite.

. 1
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There is one further matter to be discussed, namely the limiting
values of the angles ( \'/,OJ). First consider ¢ , and see Fig. 3.2.
A
The limiting ray B?C corresponds to DACO = T/2. , and thus for 0-§ L £7C

Min (8,'0(- :%E‘)<6«) € & = arc cos (1/?). (3.12)

For the limit on q/ , see Fig. 3.3, where the limiting ray f)-‘t\_“)j is shown.

= —

A
cos DOA; = 1/@ = (Ep,, Egyyy = cos ¥ cos (3.13)

so that for each @ which satisfies (3.12), we have the limits on \P -

‘\{/’ & arc cos(l/ ? cos ) ) (3.14)

¢. 1Isoradiance Plots

The earth is taken to be covered by a uniform layer of thick
flat-topped clouds at an altitude corresponding to a vertical one-way
transmissivity, t, measured from the cloud top altitude to infinity. One

calculates the spectral radiance H(A) at a variable point A on the layer

G~ scatt iav(e) tf(i’e)
H(A) = Fo [——;::;S——— 3'(0) £(1,0) (3.15)

The point A 1s characterized by geocentric latitude and longitude Y/,w
respectively and for a given set of angles ( \.f', W ) the angles of incidence,
exit and scattering i,e, 6 = ‘7'!-(5 are given by Eq. (3.9). The term
tf(i’e) glves the fractional energy loss on a slant path: sun-cloud point A -
detector under the 'weak line approximation" of Eq. (3.3, 3.4). In general,

this factor is

tfn (i,e) . LfXcos )™ + 1/(cos e)"‘]’ 0&n £ 1. (3.16)
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FIG. 3.3. LIMITING VALUES OF LATITUDE ‘.

For a given value of %' , the viewed illuminated portion of the earth is
characterized by 0AD » 0AgD = i/ /2, and thus|V¥| £ arc cos(l/ # cos u'),
Eq. (3.12-14).
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Fo = ,000568 watt/cm2 is the solar radiance in the 2.7 micron band3'10,

while the remaining terms just give the angular scattering cross section
per unit area, Q_(i,8) of Eq. (2.11, 16, 17) and Fig. 2.5. '

The scattering function iav(e) used here is given in Table 3.3.
It differs slightly from the accurate form of Section 2.2, Fig. 2.3, in
that the "rainbow' maximum at ® = 170° has been smoothed out. This was
done because this maximum complicates the plotting significantly, and its
effect is a factor of two at most, which is not particularly significant

for a first look at the isoradiance contours.

The computational problem is the following. For a given cloud
point characterized by the geocentric latitude and longitude (LV W),
the satellite viewing angles ( g ,*1 ) are determined from Eq. (3.11) and
the angles (i,e, P =qr - 0) are obtained from Eq. (3.9). The function
iav(e) is obtained by a '"table look-up'" routine and H(A) calculated from
Eq. (3.15). This part of the problem is carried out on a high-speed
digital computer for a range of points A. From these data isoradiance
contours are obtained as a function of the satellite look angles ( E ,41 )
by manual cross plotting. The isoradiance plots for a range of trams-

missivity factors t and elevation angles o are given in Fig. 3.4.
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Fig. 3.4 1Isoradiance Plots

The lines drawn are contours of equal brightness as a function
of the satellite view angles ( , 71). They are calculated from Eq. (3.15)
for various elevation angles &KX and transmission factors t. The numbers
listed give log H, where H is measured in watt/cm2 sterad, increasing up
to the value of the central maximum on a given plot. Graphs are shown for
X = 0, 45°, 90°, 120° and for t = 0.1, 05.
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d. Effect of Inhomogeneities

Apart from the obvious effect of holes in the cloud cover at
the tropopause on the isoradiance curves of Fig. 3.4, irregularities and
detailed structure in the top of the cloud cover can produce certain
changes. Casual observation from jet airplanes shows that sometimes the
cloud cover looks extremely uniform, sometimes it has a very regular
structure, and sometimes it is quite irregular, with convective humps
above the general level of the surface and with occasional wisps of ice
crystals from cirrus. Of course, by looking from airplanes one cannot
give a quantitative measure of the scale of irregularities. The question
arises, how much and in what ways will these phenomena affect the general

level of the radiance of the cloud cover?

First of all, the relevant measure of '"flatness" of the cloud

tops is given in terms of the extinction length

-1
A =N o

For Deirmendjian's distribution of Section 2 (cf. Ref. 2.2, Table 2.1)
with N = 100 particles/cc, the extinction distance is of the order of

200 meters.

Consider next regular modulations of the cloud top. If the
cloud top is made us of closely packed circular cylinders of spheres,
elementary geometrical considerations show that if the sun local normal
angle is less than 60°, the effect of shadowing will be to cut the over-
all radiance by less than a factor of two. The effect of modulation
clearly depends on the frequency response of the detector system as well
as on the precise direction of the scan, but no detailed examination

seems called for at this point.
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The effect of large irregularities will clearly be to distort
the picture significantly, but any estimate of the magnitude and character-
istics of these distortions involves so much detailed input information
that once again no further investigation seems appropriate in the present

context.

Finally, it is clear that the overall effect of inhomogeneities

depends on the resolving power of the detecting system.
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APPENDIX 3A

SPECULAR REFLECTION FROM ICE CRYSTALS

At present there exists essentially no experimental information
on the actual composition of high altitude clouds , but it seems at least
plausible to suppose that they contain a certain fraction of ice crystals.
It may well be that the reflection properties of natural clouds of ice
crystals do not differ very much from those of clouds of water droplets,
but this point is certainly not established. The purpose of this appendix
is to outline some characteristic differences between water droplets and
ice crystals, mainly to provide a starting point for more detailed future

work.

The problems to be mentioned are the composition as far as
crystal size under given conditions is concerned, the motion of the crystals
with reference to possible alignment effects, and the diffraction pattern

produced by crystals of given size.

b. Composition and Structure of Clouds

It is established that the size and crystal structure of ice
crystals depends significantly on the conditions under which a cloud is

produced.

(1) Current work by B. J. Mason's group at Imperial College,
London,3'll has established both experimentally and theoretically that
cloud droplets of less than 20 P radius cannot capture smaller droplets
to grow by coalescence. On the other hand, in a supercooled mixture of
water droplets and ice crystals, the crystals grow at the expense of the

droplets as a result of a vapor pressure gradient,
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(2) Artificial ice fogs produced in winter by seeding the
moist air near 0ld Faithful geyser in Yellowstone National Park3'12 appear
to show an overall angular scattering distribution rather similar to that
predicted by Mie theory calculations like Deirmendjian's3'13 and the present
ones (cf. Section 2). However, there are also some very striking specular

effects.

(3) As against this, certain other measurements on natural
ice fogs off the West Coast of Alaska dealt essentially with frozen water

droplets3'14.

(4) Extensive measurements by Weickmann & Aufm 1(;«.1mpe3°2 have
discovered prismatic single crystals up to several hundred microns in
length and with a length-breadth ratio of the order of 1 - 5, and hexagonal

plates of the same maximum dimension and perhaps 50 microns thick.

In summary, there does not appear at present to be sufficient
experimental evidence to enable us to make any categorical statements about
the size and shape of ice crystals. In particular, there seems to be no
justification in favor of using results for low altitude ice fogs to infer
the behavior of high altitude cirrus clouds., Such factors as the absolute
humidity, density, temperature and temperature gradient and availability
and type of condensation nuclei are simply not understood adequately as

far as their detailed effect on cloud composition and structure is concerned.

b. Motion and Alignment of Ice Crystals

The terminal fall speed of a sphere of radius a and density ? in

a medium of density f m and viscosity ‘q m is

=(2/9)ga2(?-?m)/vlm. (A.1)

v
term
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For air,‘q o= 10“4 gm/cm sec, so that for water droplets of radius a = 1,

10, 100 microns the terminal speed v is respectively 10-2, 1, 102 cm/sec.

term
In other words, for crystals of dimensions 1 - 500 microns, possible
convective flow speeds in clouds, which may go up to 103 cm/sec, are adequate

to maintain the particles in suspension.

Ice crystals may be aligned either by non-uniform flow fields
such as wind shear (especially for needle-shaped particles), or by aero-
dynamic forces, which are particularly important for disks and other
flattened objects (L/D > 1). The effect of wind shear can readily be
shown to be unimportant. In laminar flow, wind shears @ u/ D y are of
the order .03 (cm/sec)/cmB'15
102 x 10% x 10 (in micron), the force A M 2u/ D y is of order 10-10 dyn,

as against the gravitational force mg ~~ 10~ dyn. Thus, unless velocity

, and thus for a crystal of dimensions

gradients in turbulent flows are 104 - 106 times larger than these observed

values, the effect of wind shears will be negligible.

As far as the overal aerodynamic motion of objects of various
shapes under the action of viscosity and gravity is concerned, qualitatively
this is a very complex '"phugoid" motion. Two examples of this are shown
in Fig. 3A.1. Whether the motion is damped or autorotating depends on para-
meters such as the wing loading, Reynold's number, ratio of the moments

of inertia, etc. The overall aerodynamic problem is a very difficult
one3'16’ 17, 18

c. Diffraction Pattern

As a measure of the importance of diffraction effects, consider
the Fraunhofer diffraction from a circular aperture of radius a. The
angle 91 of the first zero in the diffraction pattern produced by light

of wavelength A 1is given by the relation

sin 8, = 0.61 (2 /a). (A.2)
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(a) DAMPED MOTION (b) AUTOROTATING MOTION

812255

FIGURE 3A.1. POSSIBLE PHUGOID MOTIONS OF ICE CRYSTALS
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Clearly this angle 8, gives a measure of the effective width of the

diffraction pattern.1 For (A /a) 2 L 61 is so large that the structure
of the scattering object is unimportant: in this situation treating the
crystal as a sphere will clearly be a good approximation. On the other
hand, diffraction effects are clearly unimportant for ( A /a) & 1, so
that the specular reflection will be important in this region. 1In this
geometrical optics case it 1s necessary to understand the orientation

and motion of the crystals, as well as their shape and size, in consider~

able detail. This sort of information is simply not available at present.

d. The Energy Reflected Specularly from a Cloud of Ice Crystals

Let the flux of solar radiation be Fo watt/cm2 in the relevant

frequency range. Under conditions of specular reflection, a fraction

o
scatt
scatt abs
of this energy goes into a solid angle dw  about the direction of
specular reflection, where
v = 8&2
8“) §a diffraction + motion (4.4a)
8 ~ 072 (A.4b)
diffraction 1
x) ~ <02
motion 2 av (A.4c)

where 92 is the mean change in orientation of the crystal under the action

of aerodynamic forces.
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For a single crystal of area A = JU az, the energy radiated
per unit solid angle within a cone §w about the direction of specular

reflection is

[2w/m] =F Ad/8w . (A.5)

Now if there are N crystals per cc, the extinction distance is of the

order

(5'1 ~ (a1t (A.6)

Thus for a large cloud the total energy radiated specularly per unit of
illuminated surface area and per unit solid angle within a mean solid
angle 8w about the direction of specular reflection is

i [2w /0] N5

Hspec S

(A.7)
ill

~ F q/8w0 (watt/cm2 sterad),
i11 ©

where q ~ 0.7 while 8w is of course not known in general.

The result (A.7) should be compared with the result (2.17) of

the Mie scattering analysis

g i (8)
H(8) = F_ Seart —av. (2.17)
Cabs J(0) £(i,e)
For scattering angles greater than 60° or s0, iav(e)/f(i,e) ~ 1,
and thus '
H(8) ~ F_/300 (vatt/cm® sterad) for © ) 60°-90°.  (a.8)
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It is clear that at least for scattering angles greater than 60° - 900,

at the appropriate angle the effect of specular reflection will predominate
over Mie scattering. The relative magnitude and thus the lower limit to
scattering angles for which this is true depends on &w , but for

dw~ 1,8 2 60~ 90°, Hooo ~ 200 H (9).
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SECTION 4

DETECTION AND DECISION SYSTEMS FOR NON-GAUSSIAN BACKGROUNDS

4.1 INTRODUCTION

A central question encountered in the design of IR surveillance
detection and decision systems is the discrimination between a target and

a severe background. There are really two related problems, namely:

(1) How to find the optimum detection system.

(2) How to best describe the background and target radiances.

For our purposes discrimination between a target and a severe
background means that the detection system will be required to decide
whether a particular alarm signal received is due to a target or a back-
ground condition, that is, the system must be able to distinguish between
targets and severe backgrounds occurring separately rather than simul-
taneously. The occurrence of a target together with a severe background
will be a very rare event (and therefore relatively unimportant) since
each individual event in itself is rare. It is the events which produce

false target indications which cause the main difficulty in IR surveillance.

For example, consider an infrared detection system operating
from an Earth satellite whose purpose is to detect a missile launch from
plume radiation. 1If it is accepted that there exist occasional severe

backgrounds due to high-altitude, infrared-reflecting clouds, then the
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next question is how to make a detection system work despite the severe
background. Numerous discrimination schemes have been suggested which
take advantage of background and target signal characteristic differences.
Each scheme may be examined in terms of the background model(s) which

may be developed to decide which appear most promising. Statistical
methods are generally involved, and such methods will be used for selec-
tion of background descriptions and comparison of various alternate

detection systems.

An optimum detection system is defined for our purposes as
one which is capable of extracting a target signal from a background and
of deciding for or against alarm activation with a minimum of incurred
errors or 'cost.'" There are two kinds of possible errors which may be
made in deciding for or against an alarm with associated probabilities

of error. These are:

(1) Mistaking a target for a cloud.
(2) Mistaking a cloud for a target.

The second type of error becomes serious if the cloud radiance probability
density distribution overlaps the target radiance distribution and if

the threshold for alarm decision is determined so that a warning will be
sounded for the majority of possible target radiances. False alarm then
becomes a nuisance, and it is imperative that the detection system be
designed with an optimum capability for discrimination against background

radiances in the high radiance tail of the probability density distribution.

A general criterion for system performance based upon statisti-
cal decision theory is formulated in Section 4.2. This provides a funda-
mental basis for examining various discrimination schemes. The general
approach has been to minimize the expected costs for the various possible
detection outcomes. This approach, however, requires a knowledge of the
a priori probability of target presence and the assignment of costs to

the possible detection outcomes.*

*See Section 4.2 b for specification of the four possible detection

outcomes.
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It is shown in Section 4.2 that the Neyman-Pearson criterion4

of minimizing the conditional probability of target miss for a given
conditional probability of false alarm represents a partial minimization
of the expected cost. The virtue of this criterion is that it does not
require a knowledge of a priori probabilities and costs. Furthermore,

in most of the situations encountered in the present study, this criterion
reduces to the single signal threshold criterion for deciding for or

against target presence.

In Section 4.3 the properties of probability density functions
representing the background radiance patterns under the various imposed
conditions (sun angle, elevation angle of azimuthal scan, etc.) are
investigated and typical non-Gaussian models are presented. Finally,
since the physical model developed permits only the derivation of proba-
bility density functions for background radiance and not for the signal
input to the decision device, the conditions under which these two proba-
bility density functions are identical are examined, and possible approxi-
mate methods for transforming the radiance probability density function

to signal density function are considered.

It may not be possible to discover the optimum detection system
design. In fact, one would probably be content with a system which works
despite severe background without too much regard for whether the system
is optimum or not. A variety of design approaches are possible if optimi-

zation 18 not required but, instead, simply a workable system:

A performance criterion developed in Section 4.2 e is applied
in Sections 4.4 and 4.5 to the cases of the single sensor and the multiple
sensor with correlation of output signals. The criterion permits the
comparison of the relative performance of these two types of systems. The
result of the comparison indicates that correlation can enhance system
performance considerably if sunlit clouds are indeed several times larger

than the target.
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In Section 4.6, the optimum linear filter is considered. In
this connection, the best representation of background information has
become controversial. As Robinson1 has pointed out, many of the possible
representations of background radiance information do not retain enough
of the background information to permit the design of an optimum detection
system. The problem of representing the background adequately becomes
more severe when sophisticated discrimination methods are considered.
Some of the possible representations of background which may often be
found inadequate are:

(1) One dimensional Wiener transform and autocorrelation function.
(2) Two dimensional Wiener transform and autocorrelation function.?
(3) Radiance probability demnsity function.
(4) Radiance joint probability density function.3

(5) Rough radiance maps using limited gray scale.

The problem with the use of the first two descriptions which
Robinson1 has pointed out, arises because of two factors. First, the
background probability density function is generally non-Gaussian. In
this case the methods applied to the selection of an optimum linear signal
processing do not permit the selection of the best possible processing
which may actually be a non-linear filter rather than linear. Secondly,
the requirement of decision for or against alarm of the basis of signal
level relative to a threshold introduces an inherent non-linearity in the
system. Any design approach which does not account for the non-Gaussian
nature. of the background and the non-linearity of the decision processes

cannot be expected to succeed.

It is clear that it is not essential to retain all background
information for design purposes, since, depending upon the detection and
discrimination method selected, much information will be irrelevant to

system performance. A complete background description would consist of
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an enormous quantity of high resolution, large radiance-ranges, radiance
maps with geographical location, time ({ncluding season and sun angle),
weather conditions, detector position, wavelength region, and other condi-
tions assigned to each map. Fortunately, the complete description will
probably never be required for the design of any particular system. The
problem is, then, reduced to one of selecting the appropriate background
description for the design of a detection system employing the selected

discrimination method.

The comparison criterion developed and applied in the later
sections specifies the best way to express the background in the appropri-
ate form with regard to the particular discrimination method which it is
desired to use. Thus, the problem of the appropriate form of the back-
ground representation disappears. However, the great practical difficulty
of obtaining the numerical values for parameters appearing in the background
expression still remains. The solution to this particular problem lies
in improving methods of data gathering, processing, and reduction and in

performing additional background measurements of sufficient extent.

4.2 PERFORMANCE CRITERIA

Various performance criteria will be discussed and compared in
this section. The general approach to the design of optimum detection
systems has been to formulate the expected cost in terms of the decision
outcomes. This approach is one suggested by statistical decision theory.6’7
The criterion for this general approach is that the best system is one
which minimizes the expected cost of the system outcomes. Here cost is
used in a very broad sense of damage or hurt of any sort incurred. How-
ever, the practical feasibility of this decision theory approach is
limited by the knowledge of certain doubtfully obtainable a priori proba-
bilities and by the necessity of assigning cost values to particular detec-

tion system outcomes. We will see that a partial minimization of costs
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is possible even though the numerical values of the a priori probabilities

and costs of system outcomes are not known. This partial minimization

is adopted in the subsequent applications.

The minimization problem is outlined as follows: A sample
function is observed over a finite time interval. This sample function
consists of background signal having known statistics and may or may not
contain a target signal. The observed sample function is suitably pro-
cess. 1 and then a decision is made as to whether a target signal is present
or not. For each of the four possible combinations® of target.signal
presence and decision a cost is assigned. The system is then optimized
by finding the decision rule which leads to a minimum value of the expected

cost.

a. Probability Density Functions

It is convenient to formulate the detection problem on a discrete
basis. The background is described by a set of numbers which give the
radiance in each resolution cell of a finite area. Since these numbers
are obtained by sampling the outputs of sensors, they also include all
of the noise components arising from the background signal and the system.
A convenient method of representing these background samples is a row
matrix of n elements, where n is the number of resolution cells in the
area being considered. The components of this matrix may be assigned in
any known manner to the resolution cells., It is assumed that the time
sequence in which the cells are observed precludes the possibility of a
particular moving target appearing in more than one cell. Let the back-

ground matrix be designated as

B = {bl, Bys « o e bn} (4.1)

*
See Section 4.2 b
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The background has associated with it a probability density function

designated as wo(f) and normalized such that

wo('i) dB = 1 (4.2)

The function wo(i) represents the probability that the background signal
will be found between B and B + dB when it is multiplied by dB.

The target, or targets, may also be described by a matrix,
most of whose elements are zero. It is assumed that each target is
sufficiently small, so that it can occupy only one resolution cell. This

matrix is designated as

T = {tl, tys o e e e tn} (4.3)

It is also necessary to assign a probability of target presence
and a density function for target amplitude when a target is present.
Hence, let PO be the a priori probability that no target is present, and
Py

will be seen later, it is often difficult to say precisely what these

be the a priori probability that one or more targets are present. As

probabilities are. Since these probabilities are mutually exclusive

P, +P =1 (4.4)

The probability density function for target amplitude is designated as

wl(E) and normalized so that
wl(E) dr =1 (4.5)

Thus, the a priori probability density function associated with the

target matrix is

p(T) =P, &(T-0) +P, w (T) (4.6)



where

1 for T =0
8(T-0) = ' 4. 7)
0 for T =0

The observed resultant signai is in general some combination
of the background signal and the target signal. The background and
target signals are assumed to be statistically independent.* For most
systeas the target and background signals are combined by simple addition,
but it is not necessary to make this assumption for the general derivation

. . Fk
being considered.

Let the observed resultant signal be designated by a row matrix

also, so that

S = {Sl’ Sgs v v s sn} (4.8)

%
There are conceivable conditions where background and target signals
are not statistically independent. For example, launching might be

difficult under weather conditions that produce high backgrounds.

*?f the target is a true point source, the assumption of additivity is
exact. Any real target will, however, obscure a portion of the back-
ground. Thus, a substitutive rule will be used in a later section
since the target image for systems of interest will be on the order of
a resolution element in size. This approximation also permits a simpli-

fication in the mathematics.
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Associated with this matrix are two conditional probability density
functions, p (§ lE ®# 0) and p (E IE = (). The first probability density
function is the probability that if a target signal is present and has

a particular value T then the background signal will be such as to give
a resultant signal which lies between S and 5 + dS. The second proba-
bility density function, namely p (§ 'T = 0), is the probability that

if a target signal is absent then the resultant signal lies between

S and S + dS. This latter density function is identical with the proba-

biiity density function of the background, w0(§).

Although the probability density functions introduced in the
preceding paragraph appear simple at first sight, they contain a wealth
of information from the 2n random variables of background and target.

The practical description of the background in terms of such probabilities
may not be possible at all as will be seen in Section 4.3 where this
subject is again taken up. Despite the complexity of these conditional
probability density functions, they enable the definition of various

kinds of averages which are practical to use. Also, restriction of the
number of variables permits the practical applications of these functions.
In any case, this framework, while complicated, is necessary to describe

the problem carefully and does yield suitable quantities for practical use.

b. Decision Rules and Cost Functions

The decision operation, which decides for or against alarm
activation, is designated by & (5, Q ). The matrix S is the measure-
ment space and (7 is some selected subset. For a single threshold
decision, the specification of () divides the‘measurement space into two
regions. All T not contained in (} lead to a decision of no target
present, and S lying within f) lead to a decision that a target signal

is present. Thus
1 for S¢ {)

85G, ) = (4.9)
OhrSOQ =0
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The sub-space over which we have elected to decide for target
presence may be found by integration of & (5, {) ) over all S. Similarly,

the sub-space over which we decide for target absence is the integral of
{ 1 - S(E,Q)} over all §.

Finally, it is necessary to assign evaluation or cost and gain
functions to the four possible outcomes which are the result of time,
target condition and the applied decision rule. The possible outcomes

and 'heir associated cost functions ¢ (T, § ) are:

Decision for target absent when target is absent.

C (T =0, <‘5=0)=co
Decision for target present when target is actually absent.

c (T =0, 6‘=1)=cf

Decision for target absent when target is actually present (4.10)
c (T x0, §=0)=c

Decision for target present when it is present.
c (T XNo, 65=1) =c,

The costs associated with the correct decisions are Co and
C4q, where C, is the cost of deciding target absence correctly and Cy
is the cost of deciding for target presence correctly. It will be seen
that these particular costs are actually gains and so will be negative
numbers or zero. The costs associated with incorrect decisions are
positive costs and are Ce and Cm’ costs of false alarm and of target
miss, respectively. The costs C¢ and C, will usually be assigned large

values relative to the magnitudes of Cgq and C,.

4-10



Since the occurrence of various cost values is random, it is

appropriate to find the expected value of the cost, E <C (E, 6)>

c=£<c(, ) =EKc) +E {c;p + E {cHP+E <c;1) (4.
It is readily seen that
E (o ) =C P jp Glt=0 {1- 5(§,Q>} ds (4.
E {c;) = ¢, POJp Glt=0 §G, Q) & (4.
E ¢, ) =CmPlJp GlTxo (1— §G. (N & .
E (cd> = C, P, Jp GlTxo &G, )) 4 (4.
from which
C=p C +P C_ +J 585G, 1) {Pop(§ |T = 0) (cemc) (4
+rp GIT £0) (-} @&
In deriving Eq. (4.16) the normalizing relationships
Jp GlT-0 d5-1 .
and
p G|T=0) d5=1 .

have been used. The expected cost may also be written in terms of the

11)

12)

13)

14)

15)

16)

17)

18)

conditional probability of false alarm, P;. and the conditional probability

of detection, Py, defined respectively by

Pf=j 6G.01) » GIT -0 a5 (4.
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and

o= | 86 Q) »pGIT x0) o (4.20)

In terms of P and Py the expected cost is

C=P C +P C +P P (CrC)+P Py (Cy=C) (4.21)

1
The general design criterion may now be stated. The optimum
system will be that system whose parameters produce a minimum for the
expected cost. In other words, the decision rule é;(§,§? ) must be
chosen so as to minimize the expected cost. The appropriate decision
rule is that & @, Q) zero when the integrand of Eq. (4.16) is positive

and unity when the integrand is negative, that is

C_-c¢ P
0 when ./\\<\ _E:f-_-—-c—o_ Fg
G, N ) = mod 1 (4.22)
C.-¢C P
l 1 when ./\.> —f o - 2
C -C P
m d 1

where the likelihood ratio, is defined as

/. G lT=0 (4.23)
-0

p(S | )

=i =l

The actual application of Eqs. (4.22) and (4.23) clearly depends upon
having some data with respect to cost values and a priori probabilities.

Thus, this result has somewhat limited practical scope. One way to get
around this is to use a partial minimization of the expected cost
Eq. (4.21). This leads naturally to the Neyman-Pearson criterion if we

minimize the last term on the right of Eq. (4.21) as we shall see.
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According to the Neyman-Pearson criterion,4 a decision for
target presence is made when the ratio '\ defined by Eq. (4.23) exceeds
some particular value, say K, for the observed S. When for some S, A{ﬁ\h
falls below K, then a decision for target absence is made. The value of
K is selected to give a preassigned false alarm rate. This amounts to
a specification of Cg. For the Neyman-Pearson decision rule, the decision

operator is then

1 when J/\L > K

SNP G, ) = (4.24)

0 when ./\\<K

A unique decision operator is not specified since K may have any desired

value.

It is of interest to compare Eqs. (4.22) and (4.23) with the
Neyman-Pearson criterion for selecting the decision rule. In the previous
case a definite value of 4/“& is specified when the costs and a priori
probabilities are known. Under the Neyman-Pearson criterion, however,

the threshold is arbitrary.

The following argument indicates that the Neyman-Pearson
criterion is a first step towards minimizing the expected cost. If the
expected cost is expressed as in Eq. (4.21), a possible approach to mini-
mizing the cost would be to optimize one of the four terms on the right
side while holding the other three constant. The only control permitted
is over the terms involving Pgf and Pq. Under the Neyman-Pearson criterion,
the choice of K fixes the value of Pg. Since.(Cd-Cm) is always a negative
quantity, & partially optimum system will be that for which Pd is & maxi-
mum so that the cost is minimized. This procedure corresponds precisely

to the Neyman-Pearson criterion.



The great virtue of the Neyman-Pearson criterion lies in the
fact that it enables some control over the cost without requiring a speci-
fication of the costs or a priori probabilities. This advantage is to
some extent illusory, however, since it is not possible using this criterion
to know what the actual cost is. Furthermore, since costs are not evaluated,
the actual gain achieved by using the optimum system rather than some

compromise system cannot be determined.

c. Single Threshold Criterion

Another decision criterion often used is the single signal threshold
rule. Under this rule a decision for target presence is made when § exceeds

some threshold value, say §é. The decision operator in this case is

1 when S ) -S-e
§G, N - (4.25)

0 when 5 £ S

This criterion is the same as the Neyman-Pearson criterion when 4/\; is

a monotonic function of S in which case the Neyman-Pearson condition
separates the signal space into just two regions. However, if for a given
value of J/A\ there correspond several values of §, then no single signal

threshold can satisfy the Neyman-Pearson minimization.

An example will be discussed to demonstrate the relation between
the Neyman-Pearson condition and the single threshold condition. Suppose
that the background probability density function, w,(B) is bimodal with
most clouds providing radiance less than the target radiance and a very
few clouds producing radiances much in excess of the target radiance values,
Note that these latter radiances correspond to small values of the proba-
bility density function. The Neyman-Pearson condition will require two

signal thresholds: one which separates the low cloud radiances from the
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range of target radiances and a second one which separates the high cloud
radiances from the target range. In this manner both low and excessively
high cloud signals will be excluded from the f) subspace. However, the
region of high radiances which is excluded by the upper signal threshold
will not affect system performance significantly provided the probability
of occurrence of such clouds is very small, i.e., their contribution to
}’p (s ’T = 0) d5 is small. For all practical purposes, then, a single
signal threshold would suffice. This is expected to be the case for
missile-launch detection systems. Thus, the establishment of a single
signal threshold for practical systems is equivalent to design according
to the Neyman-Pearson criterion provided that the target and cloud distri-
butions are well separated and most backgrounds are in one region of the

signal space.

Other decision criteria are possible such as for systems using
correlation. For example, a decision for target presence might be made
only when the threshold for a single detector is exceeded and the signals
from adjacent detectors remain below the signal threshold. 1In this way

discrimination against large reflecting clouds can be achieved.

If the detection system is equipped with data storage capability,
the possibility of reserving a decision until more data is accumulated is

permitted.*

d. A Priori Probabilities and Costs

As already mentioned, the Neyman-Pearson approach is the only
approach which is reasonably general yet independent of a priori proba-
bilities and cost assignments. In order to use the more general minimum
cost criterion of Eq. (4.22) these probabilities and costs must be known
or estimated. It might prove instructive to examine what is involved in

estimating these quantities.

*
In this case, Wald's sequential criterion might be usefu1.5
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Since the probability of any enemy ICBM attack varies from day
to day as the international situation changes, the estimates of P1 must
be updated since P1 is the a priori probability of target presence in the
interval t, and ts + dt. Other conditions which are usually steady
relative to the height of internal tension feed into the estimates of P1
such as the number of enemy missiles on launch pads and their probable
targets. Various governmental, military, and intelligence agencies make
estimates of the probability of an enemy attack from which it might be
possible to derive the probability of target presence in the field of
view of the detection system, Pl' Since much subjectivity goes into these
estimates, their reliability may be poor. So far no test cases have
occurred to verify the estimates, although past experience and the absence
of an attack indicate that P1 is usually considerably smaller than unity.
In view of the questionable reliability of estimates of Pl, any design

criterion which is independent of a knowledge of P1 is favored.

The cost functions of Eq. (4.10) are even more difficult to
estimate. In any discussion of costs of errors of a surveillance system,
complicated interactions of the surveillance system with other parts of
the defense system have to be considered which causes difficulty in such
a general discussion unless the rules of the defense game are known. What
is the cost of a detection miss for one single element in an extensive
surveillance system consisting of warning radars as well as satellite
infrared systems? Perhaps the cost is that of not having the advantage
of an earliest possible warning. Thus, it might be inversely proportional
to the extent of build-up of the retaliatory forces actually achieved at
the moment the attacking warheads reach their targets. Or perhaps it is
a function of the warning time actually achieved by the overall system
so that the cost of a miss depends upon the functioning of the rest of

the surveillance system.
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What is the cost of a false alarm? Does it amount to the cost
of scrambling SAC and initiating the procedure for additional retaliation?
Does it also depend upon the lack of credibility in the warning provided

by the rest of the surveillance system?

One might be permitted to say that

cm> C;

if the assumption that retaliation is not actually ordered until one or

more enemy hits have been experienced is allowed. 1In this case, a false
alarm will initiate an alert ind also will be checked out by future experi-
ence, but a miss may mean the loss of the advantage of an alert and possibly

of some of the retaliatory forces as well.

So far the decision criteria for an optimum system and for other
systems have been discussed. The assumption which is made is that the
system which uses the minimum cost decision rule would be the optimum system.

Since it is difficult, if not impossible, to know P. and the costs, it

will not always be possible to discover the optimumldetection system by
applying the optimum decision rule design criterion. In fact, one would
probably be satisfied with the best workable system of several possible
choices. What is needed, then, is some measure of individual system per-
formance which may be used to compare different systems and which will
permit, in practice, the selection of the best system. Such a performance
measure should be derivable from the Neyman-Pearson criterion or the
essentially equivalent single signal threshold criterion. One usable

performance criterion is discussed in the following section.

In summary of the previous subsections, a general performance
criteria has been derived in the form of a decision rule which minimizes
the expected cost. This criterion is shown to be of limited usefulness

since it is required to know the a priori probability of a target occurrence
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and cost functions assigned to the various outcomes. The Neyman-Pearson
criterion is shown to be free of these limitations and yet to retain

much of the rigor of the more general criterion. Finally, it is argued
that in most cases the Neyman-Pearson criterion corresponds to the simple

decision criterion of setting a single signal threshold.

e. A Usuable Comparison Criterion

It is desired to develop an analytical measure of detection
system performance which may be used to compare different systems. The
various systems will differ in their decision rules since the decision

rule used reflects the type of discrimination scheme of a particular system.
Methods for achieving background discrimination are briefly:

(1) Spatial discrimination by using small instantaneous fields
of view., Thus, if the resolution element (an individual
detector of an array) is on the order of the target size,
the field of extensive backgrounds is reduced. This

method has been considered in the single scanning detector.

(2) Spatial discrimination by using inherent background patterns
and correlations. The fact that the spatial frequencies
of cloud radiance differ from that of the target (essentially
a point source) might be utilized for discrimination. Also,
correlations due to regularities in cloud size and distri-
bution may permit discrimination. An example has been
considered for clouds several resolution elements wide in
which signals from adjacent eléments are compared and no
alarm is sounded if both signals exceed the threshold.

(3) Spectral discrimination by choosing the most appropriate
spectral region. It appears that the 4.3 micron band
offers no great advantage over the 2,7 micron region, how-

ever.
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(4) Spectral discrimination by examining spectral line shapes
or by comparing fluctuations in two or more different
spectral regions.

(5) Temporal discrimination by determining the time history
of a potential alarm radiance. Target motion or self
modulation may reveal its true identity.

(6) Discrimination accomplished by limiting the chances of
observing a severe background. Thus, a reduction in
coverage say by limiting the scan to large angles
relative to the sun position to reduce seeing bad for-
ward scattering or limiting the scan to regions near
and above the horizon to take advantage of transmissivity

losses might be useful.

(7) Polarization discrimination by recognizing that radiation
reflected from clouds may be polarized differently than

target emission.

A particular system may perform measurements upon both target

and background signals. In general, a system may be required to:

(1) Detect the presence of a completely known signal in the

presence of background noise.

(2) Detect the presence of an incompletely known signal.

(3) Detect an incompletely known signal and measure its

unknown characteristics.
As a result, the decision rule may become an involved function
of various system operations.

The gain functions associated with the correct decisions (Cd and Co)
will be neglected and the system which produces fewest errors of target miss

variety for a given rate of false alarm error will be considered the best
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system,which is in accordance with the Neyman-Pearson criterion. It is

assumed that a tolerable false alarm rate, represented by P., may be
"assigned. For comparison purposes, systems will be examined when their
false alarm rates are identical. Then the system with the smallest condi-

tional probability of miss 1s the correct choice. Since

P = [p(’s'IE*eo (1- 5(§,Q)) ds = 1 - P, (4.26)

this is the same decision rule for the best system as selecting the

system with the largest P, from all systems having equal Pf.

d

The particular system which is best for one value of Pf may
not be the best at all other values of Pf. Thus, curves of Pd versus
Pe

formance may become inverted.

for various systems may cross at some point,and the order of best per-

It is necessary at this point to consider how the s, signals
from the n sensors are combined to yield the total signal S. The decision
operator will be determined by this operation. For example, all s,
signals might be summed and then passed through a signal threshold device,
or each s could be individually passed through a threshold device before
combination. Various relationships between the individual 5, signals
might be required as a condition for decision making. One such relation-
ship could be a statistical correlation and certain restrictions upon
the degree of correlation could make up a decision rule. The procedure
whereby the 5, signals are processed to give the resultant T which is
involved in the decision operator will be critical and will be the feature

of the various systems which may be examined.

The decision operator must be modified to permit the inclusion
of the procedure for combining the 5, signals which, in turn, depends upoh
the discrimination scheme. Call this decision operator 8(3(31), fl ).

4-20



Certain simplifications may be possible in the expansions of
the conditional probabilities p(S |T = 0) and p(S |IT % 0) appearing in
the general equations for Pf and Pd (Eqs. (4.19) and (4.20)). For ex~-
ample, false alarms result only when an alarm is given but no target is

ith signal and be

present, However, a target may be present in the
missed, yet an alarm signal sounded due to some other sj satisfying the

alarm condition even though s, contains no target signal. This fortuitous

alarm will be an extremely rage event since it requires both that a target
be missed, which for most systems is very unlikely, together with a
false alarm event, which is also rare. Thus terms in p(S |T = 0) of the
sort p(siq f?i, sjc Y)j lti X0, tj = 0) may be neglected. Here

i is the subspace of all s; for which a decision for target presence

is made.

An alarm should be given when one or more targets appear.
Because of the spacing of missile launches in both time and space, it is
unlikely that more than one target will be detected at any one instant
although the probability does increase as the spatial separation of the
ith ang jth sensors becomes larger. It is probably quite unlikely that
two missiles will be launched simultaneously side by side so that target
signals appear in adjacent sensor signals. Thus, terms in the expansion
of p(gl'-l‘- % 0) of the sort p(siCQ i Si+1ch+l 'ti X0, il ¥ 0) may
be neglected.

The decision rule will determine the detailed form of Eqs. (4.19)
and (4.20). For example, suppose a system of two sensors, 8; and 5, and

a decision rule

1 when s1 > se

&G, Q ) = 1 when 8, > 8 (4.27)

0 when s, £ s

1 o’ 52 € ¢
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Then

wul

- (31’ sz}
* )

and T = 0 means t; = 0 and ty = 0. No assumption about the correlation

(4.28)

=]

between s, and Sy need be made since the result may be written for the

general case. Then Pf is

P = IJP(SPSZ ltl =0, t, = 0) 5(51,32; SO) ds, ds,

= f (s, |t; =0) (s, |c2 =0, ;) ds; ds,
o o -
Similarly we can find the detailed expression for Pd. T % 0 means that
(tl k0, t, = 0); (t1 =0, t, ¥0), or (t1 %0, ty ¥ 0).
Thus, Pd becomes

P, =//{p(s1, s) |t %0, 6, =0) +
P(s), s, | t; =0, t, ¥0) + (4.30)

p(s;s s, I t) X0, t, * 0} 8(31,52;39) ds, ds,

where
p(si, sj Iti %0, tj = Q)=
(4.31)
p(s; | &, % 0) p(s, e, ®o0, t; =0, 5)
and
p(si,sj Iti ¥ 0, tj ¥0) =
(4.32)
p(s, | £, % 0) (s, |t %o, £, %0, 8,)
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Eqs. (4.29) and (4.30) above take into account correlations between back-
ground signals, b1 and b2, and correlations such as the probability of a
double target (ti o0, tj ¥0).

Finally, it is necessary to specify how bi and t, components

add to yield the resultant S;- If
s, = b.l +t (4.33)

and
p(s;/t, =0) =w_ (s,) (4.34)

then
p(si/ti % 0)= /wo (bi) W) (si - bi) dbi
(4.35)

= / W, (ti) A (si - ti) dti
Under certain conditions, the convolution integrals above may be simplified
by approximation if some of the properties of wo(bi) and W (ti) are known.
For example, if the probability density function of background radiances

is less than some small fraction of the comparable missile radiance densities,

then a good approximation is

/wo (Si) W, (si -bi) dbi vy (Si)' (4.36)

It is permissible to use this approximation for most of the
background distributions considered here. Note finally that the background
must be represented as an n-dimensional joint probability density function
given by Eq. (4.37)

wo (B) = (5) (b, | P (by [ by, b)) P (b |by, byerenish 1)

It is seen, then, that the approach used here determines how the background

is to be described. Unfortunately, for correlated backgrounds with n any
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larger than 2 or perhaps 3 or 4, the practical measurement and determination
of such joint probability density functions becomes well nigh impossible.
The following section considers this problem in more detail and typical

probability density functions for non-Gaussian distributions are presented.

4.3 PROBABILITY DENSITY FUNCTIONS

a. Properties of Correlated Joint Density Functions

In Section 4.2 a the nomenclature for n-dimensional probability
density functions was introduced for'background signals, target signals,
and resultant signals. It is probably not possible to obtain these complete
joint density functions for n any larger than 3 or 4. If the n random
variables were statistically independent, the joint density function could

then be written down as

P(S) =p(s)) P(sy) - -« . p(s) (4.38)

However, these individual random variables are not statistically independent
and Eq. (4.38) cannot be used to represent the joint probability density
with good accuracy. Eq. (4.37) might be used if corrections for random

variable correlation could be incorporated.

Suppose a joint probability density function exists for two
correlated random variables s, and sj designated by p(si, Sj)' Let g
and s, have individual probability density functions p(si) and p(sj),
respectively. Also, let p(si Isj) and p(sj lsi) be corresponding condi-
tional probability density functions for s, given sj and sj given Si’

respectively. Then

plsgs 5 = (s Bl |5 =p(s) pes, | 8 (4.39)
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Suppose next that the correlation between s, and s, is perfect

i 3

so that the correlation coefficient‘/o is unity. Then p(si, sj)
becomes
JOREPRES ICH 8¢, - s = p(sy) 6(Sj"si) (4.40)
where
5(si - sj) and (S(sj - Si) are delta functions
1 s, = sj
&(s; - s) = 5(sj -8 = (4.41)
0 s, % sj

Finally suppose the two random variables are statistically

independent so /) = 0. Then p(si, sj) is given by Eq. (4.42) as
p(si’ sj) = P(Sl) P(Sj) (4'42)

By comparison of Egqs. (4.41) and (4.42) with the general form
of Eq. (4.39), it will be seen that the conditional probabilities,
p(si Sj) and p(sj Si)’ range in functional structure from delta functions
for perfect correlation to the individual density functions for no correlation.
Thus, for some intermediate value of /D , the delta function in Eq. (4.40)
must be replaced by a function broader in (si - sj) whose dependence upon
the conditional variable, say in this case S;» becomes less as ,/,approaches
zero. The actual function will, in most cases, be difficult to estimate,
but the above considerations indicate something of its general form as a

function of the degree of correlation.

The n-dimensional joint probability density function, p(g),

must satisfy certain properties such as

/p(te:) ds =1 (4.43)
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I

p(S) ds) . . . .ds__ =p(s) (4. 44)

. p(S) ds = U (4.45)

2

js
1
[sz ) d5= A+ 44° (4.46)
i P = v u :
IS’
1

s p(S) ds = 5(lj+ u (4.47)
where
a; =8 G- u)z) (4.48)
and
oy =B Loy ) syt D) (4.49)

are expectation values. Note that p(g) defined by Eq. (4.38) satisfies
all these properties except Eq. (4.49) unless cxij = 0 that is, unless

there is no correlation.

It may in some instances be possible to approximate p(g) when

correlation is involved by

P(5) =p(s;) P(sy) - - - p(s ) + £(5) (4.50)

where f(§) must satisfy the properties

[f (s) ds =0 (4.51)
/. .. £(5) ds, . . .ds _, =0 (4.52)
[si £(S) ds =0 (4.53)
s,2 £(S) ds =0 (4.54)

1
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5y % £(8) ds = o(ij (4.55)

The problem reduces to finding the appropriate form for f(g). In general,

the approximation for p(g) of Eq. (4.50) will not satisfy higher order
properties of the true p(S).

In summary, two approaches to approximating joint probability
density functions in the case of correlation have been suggested, namely,
cors .ct successive p(si) in Eq. (4.38) to account for the correlation

or assume independence and then make an additive correction (Eq. 4.50).

b. Deduction of Probability Density Function from Physical Models

1f physical models for the background radiance and target radiance
can be derived, say from theoretical and empirical studies, how may the
required probability density functions be obtained? In general, a set of
particular conditions must hold for the production of a given radiance

th condition,

value. If P, is the probability ot the occurrence of the i
and if the conditions are statistically independent, the probability of

obtaining the new radiance is

p (H) = Zk I ‘ i Pig (4.56)

where the sum of k is over all sets of i which separately produce H.
Although H is a function of all i, each p; will be determined by the
specification of H and the particular set k giving rise to H. Finally,

if the p; are not statistically independent, a convolution of probabilities

will be required.

In actual practice, p(H) will probably have to be obtained from
the physical model by Monte Carlo computer technique. It may also be
easier to obtain an estimated cumulative distribution function, P (H) and

then differentiate with respect to H to obtain p(H).
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At this point another difficulty arises in the practical applica-
tion of the method for assessing system performance. It has been shown
how the probability density functions for model cloud background radiances
may be obtained in principle. However, Eqs. (4.29) and (4.30) show that
the probability density function of the signal as it appears to the
decision operation is what is actually required. The cloud radiance is
converted by the sensor to a voltage. At the same time some modification
of the original radiance probability density function may occur since the
sensor may not be truly linear for all radiance values or previous signals
may have an effect. Also, the sensor may introduce noise of its own which
definitely changes tﬁe density function. As the signal processing proceeds,
the linearity, noise, and bandwidths of preamplifiers will further change
the signal distribution. The signal presented to the decision operation
device will represent possibly a much different probability density function.
Unless these modifications of the original signal‘are well understood,
it will not be possible to relate the background densities to system per-
formance. We will show immediately below what simplifying assumptions may
be made about the system to remove this difficulty.

th

Let the input irradiance to the i sensor be Hi(e, @). Because

of the scanning law and sensor motion

8 =0 (t)
(4.57)
¥ =0 ()
so that
Hi(B, g) = Hi(t) (4.58)

It is assumed that the probability density function p(Hi) is known and
that it is required to obtain P(Si)'

The output signal at time t corresponding to Hi(t) is si(t).

However, contributions to si(t) result not only from the instantaneous
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value of Hi(t) but also from the past values of Hi(t)’ This is due to
the system response function and its inherent rise time and causes the
difficulty in converting p(Hi) to p(si). Another source of difficulty
is the noise introduced by the system. However, we assume that the

internal system noise is sufficiently low so as to be neglected without

appreciable error.

The way in which the history of Hi is taken into account is to
de. ine a system impulse response function, k(t), which when convoluted

with Hi gives S, i.e.
oo

s, (£) = H, (t A k(A A (4.59)
Q

.However, this simple integral gives the correct signal only for linear
systems. Higher order integral equations are required for other types
of signal processing. In our case, we are interested only in the signal
processing which occurs up to the input to the decision operator, and

this processing is, in many cases, closely linear.

Eq. (4.59) relates individual values of Hi occurring over a
sampling time interval of the ith sensor to the output signal, ;-
However, what we need is some relationship between p(si) and p(Hi), not
between individual values of the random variables. In general, such
a relationship cannot be found analytically except for certain special
or simple cases such as Gaussian background distributions or for sensors

with sufficiently rapid rise times.

Suppose the impulse response function delays the signal by an
amount t but otherwise doesn't change the signal. Such a function is

represented by the delta function

S(t-t)
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For this case
Si(t) = Hi (to) A (4.60)

and the probability density functions are identical, i.e.,

P(H) = p(s)) (4.61)

Finally, if Hi(t) is a slowly varying function of time relative
to (e time constant of the detection system, i.e., Hi(t) does not change
appreciably over a time interval from t -7 to t + § where 7 is the
time constant of the system, then

o0

s, () = H (t) K (A) dA (4.62)
o
The problem of obtaining p(si) vanishes for this special case. Actually,
all that is required is that the relationship between si(t) and Hi(t)
be monotonic so that a single value of si(t) exists for a given Hi(t)'

Then, again, Eq. (4.61) is valid.

For a high frequency cutoff filter, the transfer function is

< .
= ——_— . .63
where 7' is the characteristic response time of the system. The Fourier
transform
o0
= i jwt
k(t) = 7T A K (w) e ded (4.64)

of this function generates the impulse response function

Ke-t/‘l‘

t 30
k(t) = T

(4.65)
0 t {0
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Let us Fourier analyze what happens to the signal as it is

processed. The Fourier transform of the input signal is

[ ]
H(E) = = % (el Y qw (4.66)
o
¥ (w) = aye I 9E aw (4.67)
(o]
Eq. (4.59) becomes upon substitution
oo oo
1 WA
s, (t) === H(t- A) [ K(W)e dwd..
i ™ o
o0
=—-7;7 K (w)dw / H(t- A)ed PP an (4.68)
(o] [o]
oo o0
-7 } K wyel @ " dw/ B(e- A)e 39 (240 5
Ie) [o]
QO
- K@) gyt aw
(o}

For K (w) given by Eq. (4.63) the product K (w)

K (w) which is

effectively the Fourier transform of si(t) will be small for high fre-

quencies (large values of W ). To see this, expand & (W)

[ UJZ
A (W) = H0) + wh 0) + =
+ : +;‘) = #(“) (0)
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For large (W , multiplication by K. (W) effectively reduces the power
of &2 in each term and the new series converges more rapidly as &

increases in size than the original.

If the loss of high frequency components of Hi(t) is small
compared to the mean value of Hi(t)’ then the radiance probability density
function will closely approximate the signal density function. If, how-
ever, the high frequency losses are high, the probability density function

wil. be appreciably altered.

If k(t) is not an extremely narrow function of t, but, on
the other hand, is not excessively broad either, then an approximation
may be used with good results. Thus for each Si(t) given by Eq. (4.59)
there will correspond an interval of input signals (Hi’ I-Ii + 5Hi).
The width of this interval, 81%) depends upon the width of the weighting

function, k(t). An average probability density, p is assigned over

ave’
this interval. Then, approximately

p(s;) ds, == P, &1 (4.70)

The wider k(t) the poorer will be the approximation of Eq. (4.70).

Another point of view with regard to the problem of relating
input and output probability density functions is simply that, when the
input is a random variable rather than a time variable of known analytic
form, no Fourier transform exists for such a variable. As a consequence,
the modification of the input density by the system cannot be evaluated
unless the modification is negligible or slight so that the transformation
of the random variable reduces to a simple algebraic operation. In order
to handle this problem when the optimum linear filter is considered in
Section 4.6, the random functions are converted to autocorrelation functions
(with consequent loss of phase information) for which transformations are

possible.
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c. Typical Background Distributions

Next, consider some typical examples of non-Gaussian background
distributions. Such distributions are required in order to account for
radiance from several different sources. For example, partial cloud
cover gives rise to a bimodal distribution of radiance; one mode is cen~
tered around the clear sky mean and the other around the cloud mean.
Clouds at two different levels may be responsible for a bimodal distri-
bution because of the differing transmissivity of the paths to and from

the clouds.

Some properties of bimodal noise, each mode being represented

by a Gaussian function, are examined below. The underlying assumptions are:

(1) Noise and signal are uncorrelated from one resolution

element to the next,
(2) Noise and signal are additive.

(3) A decision is made that signal is present if t + b )»se

or absent if t + b g s, where t and b are signal

8
and noise voltages at the output of the radiation

detector and Sg is a threshold voltage.

(4) The noise probability density function is

a

p(b)db = '\/-2_1?1 = exp {.<b-u1>2/z 0‘12}
1

(4.71)

a
2 2 2

b exp ~(b - y'/2 g~ '} db
Voo, {j Ko 2

where the a; and 22 are called weights of the distribution. They might

physically represent the probabilities of the presence of high or low
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clouds. lll and Liz are called modes of the distribution and ‘l 9 " ‘Ll
is called the spacing of the distribution. Physically ‘Ll and [lz might
represent the mean radiance of high and low clouds multiplied by the
responsivity of the sensor, the size of the aperture stop and the subtend
of the field stop. a*lz and o~ 2

2
bution., Physically they might represent the variance in radiance of high

are called the variances of the distri-

and low clouds multiplied by the same factors as ll 1 and liz.

The false alarm probability and signal detection probability
have been evaluated under the five assumptions by integrating numerically the
noise density function and the signal plus noise density function. Some
results for the false alarm probability are shown in Figures 4.1 through 4.5,
These figures show false alarm probability plotted horizontally from right
to left against threshold voltage plotted vertically. The graphs are on

“probability paper" on which a Gaussian distribution plots as a straight line.

Figure 4.1 shows the effect of varying the weights of the distri-
bution from a, = 0.5 to a, = 0.01. Figure 4.6 shows a graph of the proba-
1= 0.99, a, = 0.01.

Figure 4.1 also shows the false alarm probability characteristics for equiva-

bility density function for the extreme case a

lent Gaussian distributions -- that is, the false alarm characteristics
that would be anticipated by a system designer who had measured the mean
and variance of the background noise and had fitted it with a Gaussian

distribution. These characteristics are, of course, straight lines.

The signal detection probability characteristics under these
simple assumptions are obtained by displacing the false alarm curves of
Figures 4.1 through 4.5 vertically by the signal amplitude in the same
units as the threshold scale. In Figures 4.2 through 4.4, the weights are

a, = 0.9 and a, = 0.1.

Figure 4.2 shows the effect of varying the spacing of the two
modes by holding Lll fixed and progressively decreasing 112. As the

spacing decreases the characteristic approaches Gaussian behavior.
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Figure 4.3 shows the effect of increasing the width of variances
of the second term. Figure 4.4 shows the effect of increasing the variance
of the first term. Figure 4.5 shows the false alarm characteristics of

five cases of rather closely spaced trimodal noise.

In general, it is seen that the false alarm characteristic of
a simple "independent look" system operating against bimodal noise can
be substantially different from the characteristic expected from a similar
system operating against noise which has been assumed to be Gaussian even
in the case that the second peak is small enough that it might well be
missed in a background measurement. The bimodal characteristics approach
the characteristic of the high mode at very high thresholds and the low
mode at very low thresholds. Between these two extremes is a transition
hump. The magnitude of the hump decreases as the weight of either mode

is decreased or as the spacing of the modes is decreased.

Figure 4.7 shows another multimodal background radiance proba-
bility density function. The low radiance, due to atmospheric scattering,
blackbody radiation, and reflection from very low clouds, is represented
by a delta function centered at or near the origin. The medium radiance,
due to possible cloud cover at the tropopause, and the high radiance, due
to occasional very high altitude clouds, are represented by two Gaussian
functions. This distribution differs from the above bimodal cases in
that the Gaussian functions have much larger variances relative to the
mean and in that the bulk of the background radiance is contained at low
radiance levels (the delta function). The two Gaussian functions then
represent the structure of the high radiance tail of the total background
probability density function. This is the important region of the total
density function since it is the high background radiances which must be

distinguished from targets. The equation plotted in Figure 4.7 is
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a (e 2 2

1
“,() = a, §(b=0) + b
’ ’ ey (4.72)

2 2
) T M )20,

Vzﬂ'a'z

where
a =0.9
o

al = 0.05

a, = 0.01

Lll = CT; = 10_6 watt/cm2 ster

-5 2

liz = g =10 7 watt/em” ster

2

Such a background radiance distribution may be related to a

distribution of cloud heights since

bfo _dt

p(h) = w () = w (b) =2 4.73)

where p(h) is the probability of a cloud at an altitude between h and
h+dh, £ = 1/cos i + 1/cos e, t is the transmissivity, and dt/dh is
obtained from Table 3.2.

Under the assumption of a coplanar case (f0 = const.), a maxi-
mum overall radiance of 2.6 x 1072 watt/cm2 ster (see Section 2, Fig. 2.5),
(i = 75°, and @ = 37% Fig. 4.8)is obtained for the cloud height distri-
"bution. The two peaks shown correspond to altitudes of 16 km and 28 km.
The probability density function, p(h), has been normalized to unity.
The low altitude distribution is not shown in detail, but there is a

95% probability of having no cloud above 12 km altitude (26 kft).
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4.4 SINGLE SENSOR

Consider, now, a detection system consisting of a single
detector element and having no memory or correlator. The response function
will be assumed to be narrow so that for all practical purposes the proba-
bility density functions of the background or target radiances are also
good approximations of wo(b) and wl(t), respectively. Let the decision
for alarm be the condition that the total received signal, s, exceed

a threshold level, s,. In this simple case, Pf is given by Eq. (4.19)

]
in which
5= (s},
(4.74)
T- {9
T = 0 means t = 0, and
$@, f? ) is given by Eq. (4.25) so that Eq. (4.19) reduces to
o0
P, = p(s |t =0) ds (4.75)
i’
Similarly, Pd is
oD
Pd=f p(s,t X 0) ds (4.76)
s
Using Eqs. (4.34), (4.35) and (4.36) results in
oo
P, = wo(s) ds (4.77)
e
oo
Pd = J wl(s) ds (4.78)
0
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The specification of Pf and wo(s) determines Sg according
to Eq. (4.77). This value together with wl(s) then determines Pd for
the case of the single sensor (Eq. (4.78)). Figure 4.9 shows Pf.for
wo(s) given by Figure 4.7. Pd may be obtained for any desired value

of Sg if the target probability density function is available.

If we now compare the result of our performance prediction
(Pd for a given Pf) with the prediction which would have resulted from
at. ~ssumption of a purely Gaussian radiance distribution matched to
the actual distribution (or simply use a minimum root-mean-square noise
criterion), it is readily apparent that the structure of the high
radiance tail of an actual distribution has a pronounced affect. (See
also the discussion of Section 4.3 ¢ and Fig. 4.1). The structure of
the high radiance tail does have an affect upon the calculated Pf

which is essentially ignored under the r.m.s. approach.

If wo(s) and wl(s) are known, another way to find the best

s, for the single sensor is to choose it such that the ratio of Pd/Pf

e
obtained from Eqs. (4.77) and (4.78) is a maximum. This value of

Sg> se,m, is found by solving
j; wl(s) ds
= o =0 (4.79)
1
54 wo(s) ds
or
w. (s
1, Py (sp ) (4.80)
wo(sg’ ) Pf (se m)
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4.5 CORRELATED SENSOR OUTPUTS

Substantial gains in system performance are achieved when the
outputs of individual sensors are correlated. Suppose a detection system
consisting of two adjacent sensors. The decision rule is: signals from
each of the sensors are compared. No alarm is given if the signals from
each one exceed a threshold. An alarm is sounded if the signal from
either one exceeds the threshold while the signal from the adjacent sensor
do. * not. Finally, no alarm is given if the signals from each sensor

individually are below the threshold.

A false alarm may well be the result of two erroneous outcomes.
The signal from sensor #l may exceed the threshold while #2 remains below,
or vice versa. Since the cloud image will almost always be much larger
than a single sensor resolution element, it is unlikely that one sensor
will view an infrared reflecting cloud while the other does not. Thus,
the probability of false alarm is reduced. Note finally, that the
occurrence of the two targets in adjacent resolution elements is assumed

to be extremely rare and so is neglected.

The decision rule is

1 when S1 ) Sgi 8, < Sg

5(§, Q) = 1 when S, se; ) IS Sg (4.81)
0 when sl > se; CP se
0 when s1 £ se; 82 £ se

The assumptions made so far may be summarized as follows:
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T=0=® (t, =0, t, =0)

T %0 = (ti X0, tJ.=0) or (tiko, tj*O)

P (t, %0, tJ,kO):::O

Then

Also

PG |T ¥ 0) = p(s,, s, |6, %0, ¢, =0)

+ p(sl, s, ltl =0, tz X 0) + p(sl,s2 tl ¥0, t

But it is assumed that the condition represented by the last term on

(4.82)

(4.83)

(4.84)

the right of Eq. (4.84) is impossible so that this term must be excluded.

Also, because of symmetry

p(S|T %0) =2 p(s t, ¥0, t, =0)

1 %2 l 2

=2 p(s; |, ¥ 0) p(s, |cl 50, t, =0, )
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The following additional assumptions are made:

p(s, ltl %0, t, =0, 5) =p(s, |t2 = 0) (4.86)

i.e., p(s2 t., =0) is independent of the fact that t1 % 0,

2

and

p(52 ’tz = O)swO (sz)
(4.87)
p(s; [t; ¥ 0) =w (s))

Using the above information and Eqs. (4.19) and (4.20) gives, finpally,

(7 (%o
P, =2 w_(s)) p(s, 'tz =0, 5, =b) ds ds, (4.88)
)Se 32 = 0
o0
(" (e
Pd = 2 wl(sl)wo (sz) ds1 ds2 (4.89)
JSG 32 =0

Egs. (4.88) and (4.89) should be compared with Eqs. (4.77) and (4.78)
for the single sensor. The modification due to correlation will be

apparent.

The ratio of Pd/Pf is
o0 s
J I 9
Pa 5 vy (s)) dsg o Y (8p) ds, (4.90)

3 oo
£ Sq
. w () p (s, |c2 =0, s, =b)) ds ds,
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The term p(s2 It2 =0, s =b1) cannot be simplified since it represents

1

the probability of finding s, knowing that the adjacent background signal

2

was b1 and, therefore, it contains the background correlation information.
A comparison of Eq. (4.90) with the Pd/Pf ratio for the single

sensor discussed in the previous section indicates the possibilities for

improvement of system performance using correlation techniques.

a. Improvement due to Correlation

It should be readily apparent that the evaluation of Eq. (4.90)
for any but exceptionally simple cases would be extremely difficult. How-
ever, let us restate Eq. (4.90) in simplified terms and introduce some
indicative numbers to see what degree of improvement is possible. For

the single sensor

fﬂ ] P (s > Sg , t %0) .91
Pe single P(s > o I t =0)

and for two sensors with correlation

P (sl > sy & X0) P (s,& s
P (s1 > Sg :tl =0) P (s2 s

(ad
1
o
-
w
-
~

f two

The improvement is represented by the factor

[ - P (32 £ g Itl kO, t2 =0, Sl) .93)
P (32 < S 'tl =0, t, =0, $))

If the correlation of the background is strong, then this factor will be

appreciably greater than one. Suppose, for example, that if ) is found

to exceed S5 and if £, = 0 and t, = 0 then s, has a probability of exceeding

Sq of 0.9. Also, suppose that if 81 is found to exceed Sg but t1 % 0 that
the probability that s, will exceed Sg given t, = 0 is a very small number,

€ . Then the improvement is
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1-©
1-0.9

= 10

I =

An example of the relationship between a simple cloud model and the
improvement will be examined. Suppose that a severe background is
represented by a cloud 10 detector elements wide. We then ask, what

is the probability that if the ith detector sees the cloud the i + 1
detector will not see the cloud. If the cloud is uniform in radiance,
then the ith detector must be viewing near an edge in order that the

i + 1 element not view the cloud also. We estimate the chances of this
as two in ten or a probability of 0.2, 1In this case, the system per-
formance would be increased by a factor of 5 because of correlation.

A cloud 20 elements wide would give the improvement factor of 10

obtained above for the conditions assumed.

b. Correlation Coefficient

A useful measure of correlation is the correlation coefficient
which has been mentioned before. The correlation coefficient for the
simple cloud model introduced in the preceding section is derived immedi-

ately below.

The correlation coefficient is the ratio of the covariance of

two random variables to the product of the square roots of their variances.

fxy =l oV (X,¥) (4.95)
Var (X) Var (y)

In terms of the joint probability density function of x, y,

p (x,y) the correlation coefficient is

j (x - ux) (y- uy) dxdy p (x,y)
};y _ (4.96)

f(x- #x)z p(x,y) dxdy (y- /~iy)2 P (x,y) dxdy
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What is the correlation coefficient corresponding to the

example of a cloud ten elements wide? We have
CE G U Gy, B
Y Uy 2
E® -0 E@® ., W

1

(4.97)

where E represents the expectation operator. We take for our model a

discrete distribution of bi'

P (b;) =0.005 (4.98)

E (b) =E (b)) = 2: r, B(b,) (4.99)
i

and assume that when the cloud is observed, bi = 10"5 which exceeds se

and bi = 0 when the cloud is not in view. Since there are ten positions

where this value of biAwill be received

5 7

E (b)) =4 =10 x 107 x .005 =5 x 10 (4.100)

now
2 2 2 2 2
B, -y =BG -yt - j{: b5 P () - (4.101)
1
and
2: 2 -10 -12
T b,” P(b;) =10 x 10 x .005 =5 x 10 (4.102)
Also,
_ 2
E (b, ~U) (b, ;- W) =E Gk, . ) -U (4.103)
and since there are nine positions for both bi and bi +1 to exceed Sg
E (b, b, ) = b, b... P(b.) =9 x 107> x 107> x .005 = 4.5 x 10°2 (4.104
i i+l 2: i i+l Vi : X (4.104)

1
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Finally, the correlation coefficient is

13

P L5x 1072 - 2.5 x 10

5x 1072 - 2.5 x 10713

=0.9 : (4.105)

For a cloud five resolution elements wide, a similar calculation yields

a correlation coefficient of 0.8.

4.~ OPTIMUM LINEAR FILTER

In this section the validity of using optimum linear filters
in detection systems based on threshold decision criteria is examined.
Some simple arguments demonstrate that the criteria used in the design
of optimum linear filters do not usually produce optimum system per-
formance for threshold systems. Also, the fact that the exact form of
the target signal as a function of time is not known (the target signal
1s a random variable) is demonstrated to require a completely statis-

tical approach to linear filter design.

The ideal filter would be one with no attenuation over the
frequency band occupied by the target signal and infinite attenuation
over the rest of the frequency spectra. The current problem is to decide
on the best signal treatment when the background and target spectra
overlap. Internally generated noise will be neglected since noise due to
the background signal levels and their fluctuations will exceed any

internally generated noise.

There exist several possible criteria for the design of linear

filters such as:

(1) Minimize the mean square error at the output of the filter

(maximize the fidelity of target signal reproduction).

(2) Maximize the ratio of signal power to aVerage background

power at the output.
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For the purposes of target detection, the latter criterion is
used since this would be expected to optimize the detection sensitivity.
When it is required to retain the form of the input signal with the best
possible fidelity of reproduction in the output, the criterion of mini~-
mizing the mean square error in the signal at the output is applied. The
actual output signal usually consists of the modified input signal
together with some passed background signal. The criterion states that
the mean square of the difference between the actual output signal and
the modified ideal signal output is to be minimized. The ideal output
is obtained from a knowledge of the pure input signal or its spectral

density and the system transfer function.

An optimum linear filter may be found using either criterion
regardless of the background probability density distribution function.
The procedure invariably results in an optimum linear filter but no
assurance is given that a more optimum non-linear filter does not exist.
Indeed, for non-Gaussian distributions of background with weighted high

radiance tails, a better non-linear filter may generally be found.

Let us find a matched linear filter for a non-Gaussian back-
ground distribution and a target signal of known time dependence. The
matched filter is one where the spectral density (power per unit band-
width) of the background is constant for all wavelengths so that the
filter is "matched" to the target signal. The spectral density of back-
ground is not generally constant so the matched filter must be preceded
by a filter which converts the background input to white noise. At
the same time, the target signal input will become modified. Figure 4.10
shows the hypothetical system being considered. The input background

noise is b(t) with a spectral density of Sb(u)) given by
- -]

5, (W) SIWT R(T)H AT (4.106)

-0®
where Rb (7’) is the autocorrelation function of the background.
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The autocorrelation function of the background input signal is
required in order to obtain the spectral density of the background (these
two functions are related by the Wiener theorem). If the background
irradiance is observed for a period of time,T the autocorrelation function
is

T
1 f
= = d .

Ry (T T*%m T / b (A) b(A+T) (4.107)

In .ctual practice, since the period of observation does not approach

infinity, ( can be estimated for a stationary background by
Ry

T-1

R, (T) =3 f‘. b(A) B(A+T) dA (4.108)

0
The radiance from clouds is probably best described as a random

function of position coordinations with some provision made for rough
positional correlations which may exist. For such a case, the determi-
nation of the autocorrelation function becomes a statistical problem. The
autocorrelation function is defined in Eq. (4.107) as a time average.
There exists a theorem which states that the autocorrelation function may
be expressed as an ensemble average (average over a large collection of

possible background patterns) as well.

Because of the practical equivalence of the time average and

the ensemble average, the autocorrelation function can also be expressed

as (4.109)
o9 oo

R, (T) = . ) 5, P(s,8, lT) ds, ds, = ), slszp(sl)p(szisl}j ds,ds,

where p(sl, 8, |1‘) is the probability that s, and s, will be found when

1
the time separation in their respective measurements is U . The signals

8, and s, may be considered to be the outputs of a sensor at time t, and
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to-+'z' respectively. If the background radiance pattern is a weak
function of time, s, and s, may also be considered as signals from
separate identical sensors separated in the object space by the.

distance ‘T times the scanning rate.

The average background power out of the prewhitening filter
will be
o0

= LK (W) K (o) 5 W)dw 4
b, ('T)z v 1 1 b

where K1 (@) is the transfer function of the prewhitening filter and,
in general, is complex. Kl(a))* is its complex conjugate. Kl must be

chosen so that

Spp (W) =5, (4

where Sbl (W) is the spectral density of the background signal at the
output of the prewhitening filter and Sbl is a constant determined by

practical limitations of real sensors and preamplifiers.
- K K * - 4

Thus, with a knowledge of Sb (W) and the choice of Sbl’ it is possible
to solve for the Ky (&) required to whiten the background.

Since the autocorrelation function is an even function, i.e.,

R, () =R (-T) Z

the spectral density Sb«U) defined by Eq. (4.106) will be real, and it
will always be possible to find an appropriate Kl(a)) which will in

general be complex.
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The input target signal, t(), will also have been modified
by the prewhitening filter to a new target signal, t1 (). 1f M (W)

is defined as

o0
M (W) = ST (e (4.114)
- 00
and QO
C (D) -2 JYUE N @) aw (4.115)
0
then it may be shown that
iw?t
£, (T =:,-11:- e’ M (W) K (W) dw (4.116)

The criterion of maximum signal power to background power
ratio requires that K2 (), the transfer function of the second filter,

be chosen to make a maximum of

[ t2 (tb) ]2

2
[ 2™ ] o (4.117)
. 09T M W) K (W) K, (@) dd
TSy, K, (@) K, @)" dw
0

It is possible to show that the appropriate filter transfer function is

kK, @) = e W ¥ (). (4.118)

To summarize, what has been done above is to apply optimum

linear filter theory to a non-Gaussian background which was described
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appropriately for this approach in terms of the autocorrelation function.
The &:tocorrelation function, spectral density (Wiener spectrum), and
joint probability density functions are related background descriptions
and their use in deriving the optimum linear filter was illustrated.

The particular approach chosen applied the criterion of maximum signal

to background signal ratio.

The assumptions which were made were that the target signal
w- a known function of time and that the autocorrelation function of
the random background signal was given. If the target signal is also
a random variable then a matched filter cannot be obtained by appli-
cation of Eq. (4.118). Missile targets will generate signals with a random
distribution of amplitudes although the time variation of the signal

may actually be determined by the scanning mode and scan rate parameters.

In the case where the target signal is a random variable its
autocorrelation function must be obtained (Eq. (4.109)) since the
actual form of the signal is not known with certainty but only pre-
dictively. 1If, then, the target Wiener spectrum (Fourier transform of
the target autocorrelation function) overlaps the Wiener spectrum of
the background, the proper choice of a filter is not immediately obvious
(Fig. 4.11). However, a criterion requiring the filter to generate a
maximum root-mean-square target signal to root-mean-square background
signal is evidently applicable. Thus, we are to find the linear filter

(or transfer function, K(@)) which maximizes the ratio of Eq. (4.119).

o0
— 5,(W) K (w) dw
out = 000 (4.119)
Bout I s, (W) K (W) dw

0

where st(a)) is the target spectral density.
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Actually, more will be required of K(«)) than that it lead
to a maximum value for Eq. (4.119). For example, the condition of a
maximum of average target to average background power could be satis-
fied if K(w) is infinite over that range of «) where Sb(uJ) is zero
but St(a)) remains finite. Such a filter cannot be realized in practice
since an infinite filter gain is implied. It should be possible to
find some compromise K(«w) which is practically realizable and yet
permits good signal processing and presentation to a decision operator.
This particular problem of random target signals will not be pursued

further.

The system depicted in Fig. 4.10 is completely linear and produces

the best peak target signal power to root mean square background signal
possible. However, a complete alarm system also contains a threshold
decision filter which is inherently non-linear. An alarm is sounded

if a signal is found to exceed a given threshold value or some other
condition is fulfilled., There is usually some finite probability that

the background alone will exceed the threshold, and it is just the peak
background signals that really concern us. One cannot, therefore, expect
the linear system which maximizes the peak target signal to the root-mean=-
square background signal to be the best for discrimination purposes.
Considerations of other decision criteria and discrimination schemes

lead to similar conclusions. An example of another criterion is developed

in the following paragraph.

The total system transfer function of a matched linear filter

is
K(w) = Kl (w) K2 (w) (4.120)

where we have seen that Kl(cd) is related to the reciprocal of the

input background spectral density and KZ(uJ) is related to the input
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signal Fourier transform. Suppose then, that a detection system having
such a transfer function is required to distinguish missile targets from
severe cloud backgrounds using a signal gradient criterion. The target
is associated with high radiance gradients whereas a cloud is considered
to produce much smaller gradients. However, the transfer function of
the prewhitening filter raises the spectral density of the background at
high frequencies, making discrimination at this end of the spectrum more
difficult. The advantage of the point source resemblance of the target

is at least partially compromised.

A system providing the maximum ratio of target signal power
to root-mean-square background power may not be best for purposes of
discrimination of target signal presence from severe backgrounds. Indeed,
we have considered likely cases of background which have increased proba-
bility density above the value ¢f a Gaussian prediction at high radiance
levels. Thus, the performance of the optimum linear filter could be
exceeded by a system specifically designed to discriminate on the basis

of some characteristic possessed by the high level background signals.

Since the infrared sensors and preamplifiers are inherent parts
of infrared detection systems, it will be germane to consider the require-
ments placed on these elements by the nature of the decision operator.

For a discrimination scheme which requires that some characteristic of
the signal be preserved the minimum mean-square error criterion is appli-
cable. For systems utilizing correlation as discussed in the previous

section, sensitivity may be the most important factor® which suggests the

*
Actually, the requirement that the probability density functions of target
and background inputs remain essentially unchanged may be a more stringent
requirement than high sensitivity. This would require a linear system

with a minimum system time constant.
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use of the maximum signal to noise criterion. Thus, such a criterion is
by no means inapplicable to our problem but must be restricted to those

subsystems where its application is appropriate.
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APPENDIX 4A

WIENER SPECTRA ON THE SURFACE OF A SPHERE

This appendix is concerned with the description of the
correlations between individual random variables representing the
radiance of particular resolvable points. The usual method of
description by autocorrelation functions or Wiener spectra defined
on a plane is very arbitrary. A flat plane is a poor representation
of the earth outside a very limited area and is similarly poor for an
apparent object surface of a particular equipment. The arbitrary
choice of a finite plane approximation allows representation of a
random pattern by a two-dimensional Fourier series, This repre-
sentation is adequate to reconstruct the pattern on the plane. It
does not allow correct matching of two partially non-overlapping
patterns and the plane approximation itself can only be used over
a small area where the difference between spherical and plane

trigonometry is comparable to a desired spatial resolution.

Consequently, it was decided to investigate the correlation
properties of radiance patterns on a sphere representing the earth
itself. The distortions involved in viewing these patterns would then
be considered to be part of the information processing in the observing

system.

It was first shown that the radiance patterns observed with
any arbitrary resolution could be represented (in the sense of recon-
struction) by a series of Laplace spherical harmonics. The asymptotic
properties and correlation-power spectral properties of these series

were investigated. It was found that the Wiener-Khintchine theorem is
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not valid in spherical geometry. The principal virtue of Fourier

representation is therefore nullified.

It is suggested that this observation has serious conse-~
quences for Wiener spectral analyses of background in general. Two-
dimensional plane spectra are often used with the explicit or implicit
justification that a plane is an adequate approximation to a sphere
over a small region. It is assumed that the properties of the plane
Wi...er spectra could be extended to spherical spectra at the expense

only of labor if the extra accuracy were ever required.

Suppose that the near infrared radiance pattern of the earth
is observed with a finite angular resolution OC from a series of
satellites at altitude h. Then the linear resolution of the measure-
ments at the earth surface is never less than @ h. The radiance is
also bounded in magnitude to a value at least less than a specular
reflection of the sun. Consequently, the observed pattern is con-
tinuous and absolutely integrable. It may be represented by a function
g(0,d8) where the coordinates @ and § are spherical angular coordinates.
Absolute integrability implies that the function g will have a Fourier
transform. The assumption of finite resolution implies that the

transform of the observable process will be band limited.

It would also be possible to have a sufficient number of
satellites spaced around the earth so that the entire surface would
be observed simultaneously. 1In this case, the complete function

g(0,8) must obey the periodicity constraints
8(9,8)

g6, ¢ +2WM)
g + T, @)

Because of these constraints and band limited Fourier trans-

form ability, the function g(8, @) can be represented in all the detail
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that it can be observed by a Fourier series with a finite number

of terms. The number of terms will be of the order of

2 { 477"R2/(dh)2} . A particular form of Fourier series which

can be used to represent a function in spherical coordinates is the
series of Laplace spherical harmonics which consist of products between
a series of complex exponentials in h@ and associated Legendre poly-
nomials in the n, h and 8. In this series the harmonic of order h,n
has h periods around the © ==7T72 (equator) circumference and n

periods around a § = 0 (meridian) circumference. The series expansion

is set out explicitly in the analysis section below.

Conceptually a class of background radiance processes is
selected as generated by a weather condition, a point of observation and
a sun location. A number of sample functions of this process are
observed on different occasions from an array of satellites. Each
sample function is broken down into its representation as a series
of Laplace spherical harmonics. The coefficients h of this series
together contain enough information to reconstruct each sample function.
Application of this technique to a number of sample functions will
yield a set of values for each c_,. The distribution of this set of

nh
values is an estimate of the probability distribution of the coefficient.

4A.2 SPHERICAL HARMONICS

Any particular radiance pattern on the sphere can be repre-

sented by the series

[- -] n
2(8,d) =Z a P (cosd) + Z (a, cos h @ +b  sinh ) pnh (cos 8)
n=0 h=
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where the ah and bn are a series of Fourier coefficients, the

h
Pnh are associated Legendre polynomials of the first kind. The

series can be put in a more compact form as

o0 n
g (8,0) = Z Z ch o th@ Pnh (cos 9)
n=0

h-n
because
n n
, ~ ihg . -ihg
anhcosh(b+bnhsmh¢- i’.ltl(e + e )
h=0 h=0 2
. Phn (@ih? _ -ihdy
21
0 e1h0) e-ih¢
= }E: 7 (g~ ibg) + T (e, + b))
h=0
n
_ ih¢
- Z cnh
h=-n
a - ib
where ¢ . = -2 oh e uw>o0
nh 2
Ch = ano for h =0
a + ib
_ _nh nh
Ch=" 3 for h £0
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*
¢ = ¢
n-h nh

The coeflicients are found from the integrals

a o= 2n + 1 [d(b J sin 8 do g (8, @) p (cos 8)

. _2n+l (n-h)! h, ‘
Yah T TaI Gl fﬁlﬁj sin 6 d6 g (9,0) P (cos @) cos h¢

_ 204l (n-h)! h
bnh T4 (n+h)! f ‘{;inede g(6,08) P (cos 8) sin h@

. 2n+ n-h
Y T lhnh B 21T (n+h)' d¢

sin 6de g (8,9) P (Los 8) e

4A.3 CHANGING COORDINATES
In order to investigate the description of correlation by
these series it will be necessary to transform coordinates 6,¢ to
I .
others 6 , @ through what amounts to a rotation of the sphere. The
angle of rutathnlC?\is given by
1 . . { 1
cosOk = cos O cos 8 + sin 8 sin ® cos (@-¢)

because the scalar product of the vectors ( 1,8,8) and ( I.Gl,ﬁl)

1 1
AA = xxI + yy + zz]
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cos @ cos ¢l sin @ sin 91 + sin @ sin ¢1 sin © sin 91 + cos 8 cos @

cos @ cos 91 + sin © sin 91 (cos @ cos ¢1 + sin @ sin (61)

cos O cos 91 + sin 6 sin 91 cos (¢-¢1)

But A.Al = cos &
1

can be expressed in terms

It can then be shown that Pnh (cos 91) e1h¢

of @ and @ and the rotation required to carry 8,@ into 91,(61 by
n

oy g1 . hr .
P h (cos 91) elh's = 2 -(E-ﬁ', S Pr (cos 8) elw
n - (n-h)! 2n n
r=-n
where
hr _ 1 -i(hn)P  -i(e-h)o h4r r-h
SZn = ) ! e e (cos ) (sin T‘)
n+r

d 2 n-h 2 n+h

—r (cos T) (cos T_l)

d(cos T)

and the f ,07 and C are defined in terms of the direction cosines
1

of the axis of rotation from 6,0 to 8 (61 and the magnitude of the

rotation as follows

Direction cosines of axis of rotation are

Ww.T.t, X /0 = ;% sino= sin'T @ = tan’! (-q;/9,)
"oy qz/“) = L% cose”’sin T P = tan-l (q3/q4)
L q3/u) =£ sinf cos C T- sin“1 ql2 +q,

v2
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Magnitude of rotation €X is related to 9,

. X W _,\A 2 2 2 2 ) 2!
sin 5 =@ ;) = Lt e s v=aq +A22+q3 +q,

specifically if v = 1, & =sin (/2.
The direction cosines of the axis of rotation may be determined as
follows:

Let an initial vector A be (1,6,0)

a lagged vector B be (1,91, ¢l)

A =cos § sin 8, sin @ sin @, cos 6

B = cos ¢1 sin 91, sin ¢1 sin 91, cos @
AxB= (AB -AB) (AB -AB)(AB -AB)

The axis of rotation unit vector is (A x B). (i, j, k)/sinot

(ql,qz,qB)/sin%’ = {(sin ¢ sin @ cos 91 - cos © sin ¢1 sin 91),
1 1 . 1
(cos 8 cos § sin © - cos @ sin @ cos 87),

1
(cos § sin 8 sin @ sin 91 - cos ¢1 sin 91 sin @ sin 9)}‘/sin0'~
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solvingo~, £,

tan O’ = - _c_l_}_ sin @ sin O cos 91 - cos @ sin ¢1 sin 01
9 cos @ cos ¢1 sin 91 - cos P sin @ cos 91
q
tanf =~El—3- = (cos @ sin © sin ¢l sin Gl - cos ¢l sin 91 sin @ sin 0)
4
sin@®/2
singX cos &2

sin27“ = (sin @ sin @ cos 91 - cos O sin ¢1 sin 91)2 +

(cos O cos ¢1 sin 91 - cos P sin @ cos 91)2
cos2 T = (cos § sin © sin ¢l sin 91 - cos ¢1 sin 91 sin @ sin 9)2 + cos2 3
= (cos @ sin @ sin ¢1 sin 91 - cos ¢1 sin 91 sin @ sin 9)2

1
~(cos @ sin @ cos ¢l sin 0 + sin @ sin @ sin ¢1 sin 91 + cos Qcosel)z-l
2

291 - 2 sin @ sin © cosO1 cos@ sin¢1 sin 91 +

291+c052¢ sin29 c03291 -

sinZT‘ sin2¢ sinze cos

c0829 sin2¢1 sin

2 cos @ sin @ sin 91 cos O cos ¢1 cos 91+c0529 cosz¢1 sin291

sin29 cos261
. . 1 1 ., 1 A1 1 1
- 2 8in® cosO (sin@ cos® sin@” sin® + cosP sin@ cosP  cosd’)

+ coszo'sinze1
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sinze c0329l + cosze sinzG1 - 2 8in@ cos® sinel cosQ1

1
(sing sin¢l + cos@ cos@’)
= sin29 cos291 + c0329 sinzel - 2 5in@ cos@ sine1 cosel cos (@ - Q)l)
1

Note if @ = ¢

sin® C = (sin@ cosQ1 ~ cos® sin91)2

=sin2 (9-91)‘
T=+@-06+207)
ing ino 91 0 si 91)
tang- = - sinf (sind cos - c0s@ sin - tan @ 0_=¢+2m7r

cos@ (cos@ sian - sinB cosGl)

. , . A1 . , .1
tanf . cosf sing £51n9231n94 - sin@ sin@ ) _ 0 F= 0+l
2 cos &

2
Also note that if 91 =0 +§
1
¢ =0 +7

sinzr = sinze (coszg cos?'§ + sin29 sin2§ - 2 cos® sing@ cos§ sing}

+ c0329 {sinze c032§ + cos29 sin2§ 4+ 2 cos® sin® cos§ sin§

. , 2 . 2 .
- 2 8in® cosB {cose sinB cos g - 8in @ cos§ sm_§+

c0320 cos§ sin§ - cos@ sind sin2§} cosn

cosz‘[‘ = 1 - sin® 4
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4A.4 AUTOCORRELATION AND POWER SPECTRA

For a one-dimensional Fourier series representation on an

interval (-T,T)

8(x) =}:°° .. , L

= -00
T =29 nx
Gn = g(x) e dx
~T
the two quantities
T
1
R(g) = Lim 35— g(x) g(x +¢) dx
T900
-T
and "
T-» &0 2T

may be defined. They are called the autocorrelation function and power
spectral density of the random process g(x). They have far reaching
statistical implication if the process is stationary. Substituting the
gseries for g(x) into the integral for R(§)

T i2 Y nx

R(E) = Lin  gr— sf)) o e M

TH00 T T

Interchanging the orders of limiting processes (which is permissible if g(x) is
absolutely integrable)and changing variables to y = x +§
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_ 127 né 121
2T . wf e
R(§) = G e Lim 77— g(y) e dy
n T4 00
-1 +8§

since the process g(x) is stationary this is

+i Z%Tng

1 *
R(§)=Lim ———E G_ G e
T-50 2T & n n

which also implies

T -i2 T né
- €

This Fourier transform relationship between R(£) and wn is called the
Wiener-Khintchine theorem. It is the purpose of this analysis to see

whether a similar relationship holds for the Laplace spherical harmonics.

4A.5 CORRELATION ON A GREAT CIRCLE

Consider first two special cases

(a) g(o, #) = g(@)
and
(b) g(o, @) = g(b)
oo

In case (a) we have g(6, @) =Z C
h="~oe
and clearly x has been replaced by @ with no other change but that the

eih¢
n

range of @ is restricted to lie in (-1f,1r). The limiting process specified
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above 1s meaningless but the other identities carry through formally.

Case (b) may be written as

8(08,8) = g(cos 6) = > C, P (cos @)

n=)
(14
cn = --—--2‘2""1 g(cos ©) P (cos 6) sin 0 d®
0

m

Now define R(C) = sin © dO g(cos ) g {cos(e -()}

0
and substitute for g{cos(e -é‘)}
T

o0
R({) = | sin @ 4@ g(cos 0) Zd C, P {cos(G-C)}
n

n
P, {cos(G-C)} =P (cos 0) P (cos/™) + ZZ (QE_;—::';‘. an (cos 8) Pnn (cosC)
n= cos m (@-¢1)

taking ¢ = ¢1 and m = 0 which amounts to assuming that g(6,#) is constant

around lines of latitude

Pn {cos(e -C)} = Pn (cos 8) Pn (cosg)
r
R(g) = Z Cn Pn (cosC) sin 6 d0 g (cos ©) Pn (cos 0)

n

=Z Pn (cosg) an

n

which is a form of the required theorem.
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4A.6 CORRELATION IN SPHERICAL HARMONICS

In the general case define

™
RCETD =f daj sine do g(8,0) g(0",0")
- 0

with the intention of showing that this is equivalent to

= . 1
R(§)7l) = constant Z z Cnh2 1n(#-67) Pnh cos (0-91)

n=0 h=-n
P
n .
2 ihv _h
= constant Z Z Cnh e Pn (cos §)
n=0 h-n
then o n
ing' h 1
R (§ 71) dg sin® do g(o,d) Z z Cnhe P (cos®™)
- 0 n=0 h=-n

?
‘.'S
2.

2
s
a9
?:.

&

-4
=]
™
BO

=
g™
~I|3
=2
>l
4
w
N
=g
(21
g
&
(e}
s
z
(1]
~
L~

n
- Z Z c. Y i)t a0° 8, M| sinedeg(e,8) P (cos0)

The algebra required to perform this integration and compare with the
desired result is very tedious in general. It is therefore worthwhile
to test a special case in order that the labor may not be wasted.

Therefore, try a simple case where n =2 and ¢ = ¢l. (Note that @ = ¢1
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does not imply a great circle correlation necessarily).
2

g @0 = 9. Cn e™p" (cos 0)
h=-2

all other coefficients are zero.
Also sinz’Z’ = sin2(9-91) = sin 2§
tand” = tan @

tan f’ =0

Taking the principal solutions

hr htr r-h 2+ r
S, 1 -i( r-h)@ . d 2 . 2-h
- e (cosT) (sinT ) S——r (cos“7”)
4 2+7)! d(eosln 2t T
(sinkp)2H
so that
irg hr r
dge S on sing de g(o,d) Pn (cos 0)
s hr
2n 2ﬂ gn+h2.' )
T-i(rh)@ 204l (nh)! Con ~ in this case
and 2 s hr
27 @+h)!@-r)! 4 C
wp -5 L oo L Su
fJI = e, w e (2-b) 12 -i(-h)8  2h

and it is to be seen whether this is equal to

nZ=2 hiz Czﬁ ch (cosg )

We shall proceed to tabulate and compute these summations taking the

simpler second one first.
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TABLE 1

h
2 2 2
2 2+h
2 _h 2 (1-y9) d 2 .2
TABULATION OF Z €,.)" P (y) = Z ©,) (y"-1)
bz, 20 2 1o, 2n 225 dy2+h
h 2+h
2 2 ——g—_‘_g-(yz-l)2 Value of Total
Term Coefficient (1l-y°) dy Derivative Coefficient
2 2 I 2
c 1/8 (1-y) S—(y*-1) 24 3(1-y9)
22 v
y
3
2 ..2
¢, 1/8 e L SO 24y 3y iy’
dy
2 2.0 @ 1.2 2 1,. 2
c 1/8 (1-y9) —5 (y -1) 43y -1) 53y -1)
20 a2 2
2 2, - d ,2..2 -2 Vi..2 '
Cy.q 1/8 (1-yH & D 4y(y"-1) -3y Vl-y
2 2, -1 2 .2 2.2
G, s a-yH™r ' a-yhH? o+ ad

Consequently the entire series should bé

2, .2 J 2.2 1.2 2 1 ,/ 2 2
3(l-y )022+3y 1-y= ¢ +:,,_-(3y -1) C20 -3y l-y CZ-

1, 2. 2
21 +5(1-y) ¢,

1

2, .2 2 1 2 2_1 2 1,2, 2
3 sin £022 + 3cos§'s.i.n§c21 + 2(3coe3 f- 1)020 -icosgsinfcz_l -l—s-sin §c2'-2
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TABLE 2

2 s hr §
2 i 2T wi-n: 24 (cosf)
c —
,g.z &, 5 @-h 12 o L(x-h)
.r-h
b £-h
2 2 2 2+t
2 (! 2 2-5)! "2 d
- [ z (1-2) g
B2 2 2wyt 3 2;'-2 (2¥7) PR
P 2
utting & = cos §
E"z—t- % Value of
b r hocoeff r coeff = 1-z Derivative Derivative
0
2 - 2Wlls 4! 2 a-n° 4 & (-1°
d'o
2 a1 2Tals 3 b & 4d
-1 1 &£ 2
2 0 277ars 220 27t aen) < 122
ar
EY 312 &
-2 1 274s 1/3! Y (1-2) L 26
e
] 2 d"
-2 2 2l 1/4! £ (1-) =~ 24
&
Total term in cz is ﬂJ(cm" + co-3 sin £ + H co-z ‘*m’
22 3 ¢ Latnf+ 7 cos” Fatn”L
+ -6]‘ co.fnin’f + ;’—b' .u‘f)
a4 -2 %ﬂ/% ] 2 gy L 21
. d.o
QA %—”;—r 3! e a-n® s 2 (4a-3)
2L % § &
-1 0 3T 1 z (1-x) =5 62(22-1)
¢ az’
a 3;'"‘ L w0 oawt i,- 6(4s-1)
: de
12 T & awnd? % 2

so that the total term in (‘:2_1 is

Product
27’7512
_2317‘ ¥

%f 1-0)32

ﬂ(l-.)z

120

- l;”-b P2k

&

2

“

z(hz-3)

ZT";*(l-:) ¥(2e1)
P a-n e

3!_11}! Sa-n??

%Ic;-l[ -4 eo.3£ |Ln£ + con? §(lo couzg- 3+ couglhf(z euzf -1)

+ % sin §' 4 co-z§ -1) + % GOlflhgg

- l?:c;_l[ 4 conl‘g -2 co-3§-m£+ eo-zf(% .mg-s) + eongihg(% nhzf-l) - % chf]
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It is now clear that the terms in 02_2 and C2-1 obtained
on Table 2 have different values than those obtained on Table 1. For
example, when § ~—>» 0 the term in CZ-l goes to zero on Table 1 but
to 2 77°/5 on Table 2.

The values of the Cnh describe the radiance pattern. They
can be chosen arbitrarily from any set which keeps the pattern positive,
bounded and continuous. Consequently, the discrepancies in the function

of cos § are not to be corrected by relations between the Cnh'

Thus the Wiener-Khintchine theorem does not hold for the

particular spherical harmonic series
2

g(e8,8) = z: C2h eiha ch (cos @)
h=-2

when the lag 6-91 is arbitrary but ¢-¢1 is zero. Consequently, the

theorem does not hold in general for spherical harmonics.
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